隧道施工方案及技术交底

隧道施工方案及技术交底
仅供个人学习
反馈
文件类型:.zip解压后doc
资源大小:2.98M
标准类别:施工组织设计
资源属性:
下载资源

施工组织设计下载简介

内容预览随机截取了部分,仅供参考,下载文档齐全完整

隧道施工方案及技术交底

●盲管的构造符合设计要求。

盲管的坡度应符合设计要求。

⑴防水作业人员必须经过培训上岗,技术人员应加强现场指导,严把质量关。

⑵对设计采用的注浆防水等措施,严格按照设计和有关技术规定执行。⑶施工缝垂直设置,不留斜缝,确保止水条形成全封闭的防水圈。

⑷防水砼拌和前GB/T 36879-2018 全断面隧道掘进机用橡胶密封件,应加强对原材料的检验,合格的材料方能用于施工。在浇注过程中应加强振捣,确保砼的密实性。

⑸洞口段施工时,应注意隧道中心水沟和边墙侧沟与洞外排水设施的顺接,确保排水畅通。

围岩监控量测施工作业指导书

现场监控量测是隧道施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数,混凝土衬砌支护时间提供信息依据,为完善隧道工程设计与指导施工提供可靠的足够的数据。

⑵《新建铁路福厦线施工图设计文件》

适用于新建铁路福厦线双线隧道围岩监控量测。

隧道监控量测的项目应根据工程特点、规模大小和设计要求综合选定。量测项目可分为必测项目和选测项目两大类。选测项目应根据工程规模、地质条件、隧道埋深、开挖方法及其他要求,有选择地进行。监控量测工作必须紧跟开挖、支护作业。按设计要求布设测点,并根据具体情况及时调整或增加量测的内容。

根据本线隧道的特点,必测项目包括:⑴洞内、外观察;⑵二次衬砌前净空变化;⑶拱顶下沉;⑷地表下沉(浅埋隧道必测,H0≤2b时);⑸二次衬砌后净空变化;⑹沉降缝两侧底板不均匀沉降;⑺洞口段与路基过渡段不均匀沉降观测。选测项目应包括:⑴地表下沉(H0≥2b时);⑵隧底隆起。

根据设计文件、结合客运专线施工指南,制定本线隧道围岩量测方案。

拱顶下沉、收敛量测起始读数宜在3~6h内完成,其他量测应在每次开挖后12h内取得起始读数,最迟不得大于24h,且在下一循环开挖前必须完成。测点应牢固可靠、易于识别,并注意保护,严禁爆破损坏。

基底处理完毕经检测符合各项指标后,在仰拱回填顶面横断面上设3个测点,纵向每10m设一排,采用精密水准仪进行沉降观测。观测周期及观测时间根据现场实际情况确定。观测计划及观测方案应征得监理批准,观测结果异常时应立即报设计单位拿出处理意见,情况紧急时,应果断采取措施,确保施工安全。

隧道浅埋地段地表下沉的量测宜与洞内净空变化和拱顶下沉量测在同一横断面内。当地表有建筑物时,应在建筑物周围增设地表下沉观测点。

测试中按各项量测操作规程安装好仪器仪表,每测点一般测读三次,取算术平均值作为观测值;每次测试都要认真做好原始数据记录,并记录开挖里程、支护施工情况以及环境温度等,保持原始记录的准确性。

各项量测作业均应持续到变形基本稳定后2~3周后结束。对于膨胀性和挤压性围岩,位移长期没有减缓趋势时,应适当延长量测时间。

具体方法和要求见表1。

洞顶地表下沉量测断面布置见图1。

洞内周边收敛量测布置见图2。

拱部下沉、底部上拱、填充面下沉量测布置见图3。根据开挖方法不同,拱顶下沉和底部上鼓点应采用不同的布置方式,图3中1、2点的布置为采用CD、CRD法施工时左侧导坑开挖后的测点布置方式,3、4点为右侧分部开挖后的测点布置方式,中部点代表中隔壁拆除后的布点方式。采用其它开挖方法时,测点应根据施工情况进行合理布置,并能反映围岩、支护稳定状态,以指导施工。

净空变化,拱顶下沉和地表下沉(浅埋地段)等监控必测项目,应设置在同一断面。

每次机械或人工开挖后及初期支护后。

全长度开挖及初期支护进行中。

隧道周边共设三条监测基线,沿纵向每10~30米设一组,如图所示,测点布置位置尽可能与地面观测点相一致。

拱顶和隧底各设一测点,沿纵向每10~30米设一组,如图所示,测点布置位置尽可能与地面观测点相一致。填充面每30米设一组。

岩性、结构面产状及支护裂缝观察和描述、地质罗盘。

采用隧道周边位移计(或全站仪非接触观测法)量测。开挖后按图安设收敛杆件并进行编号,收敛杆件埋入土体深度不小于40cm。

各测点设固定桩,其设置应在开挖或第一次喷射混凝土完成后迅速完成,采用水平仪、水准尺抄平测量。尽可能和地面相应位置点同时进行。填充面固定桩在填充混凝土完成后设置。

洞内周边水平收敛位移量测

拱顶下沉及底部上鼓、仰拱填充面高程量测

表1量测项目及要求表续前表

纵向沿隧道中线每10~20米左右设一个混凝土桩,横向按图所示布点安设混凝土桩。横断面位置依据衬砌类型并结合实际地形选择在横向地形变化较小和不受仰坡开挖影响的部位。并在洞顶山体变形范围以外设两个水准点,供洞顶测点抄平使用。

洞内沉降缝每侧布设四个以上观测点,洞口布点视过渡段的情况而定,根据沉降曲线确定道床施作时间。

采用精密水准仪,混凝土桩及水准基点要求按“铁路测量技术规则”办理,桩底应埋设于冻结线以下30~50cm。沉陷抄平应按以下几个阶段进行:⑴进洞前应将所有纵、横断面方向桩全部抄平一次。⑵开挖至量测断面20m、10m、5m时、⑶开挖至量测断面时、⑷开挖超过量测断面5m、10m、20m时、⑸至衬砌前每天测量一次。当出现沉陷值突然变大时,应酌情增加量测次数,进行监视。⑹衬砌后,应根据沉陷情况继续量测一段时间。

洞口及浅埋段、下穿高速公路段、洞顶地表沉陷量测

沉降缝两侧底板不均匀沉降,洞口段与路基过渡段不均匀沉降观测。

7监测资料整理、数据分析及反馈

现场量测所取得的原始数据,不可避免的会具有一定的离散性,其中包含着测量误差。因此,应对所测数据进行一定的数学处理。数学处理的目的是:将同一量测断面的各种量测数据进行分析对比、相互印证,以确定量测数据的可靠性;探求围岩变形或支护系统的受力随时间变化的规律,判定围岩和初期支护系统稳定状态。

在取得监测数据后,及时由专业监测人员整理分析监测数据。结合围岩、支护受力及变形情况,进行分析判断,将实测值与允许值进行比较,及时绘制各种变形或应力~时间关系曲线,预测变形发展趋向及围岩和隧道结构的安全状况,并将结果反馈给设计、监理,从而实现动态设计、动态施工。

目前,回归分析是量测数据数学处理的主要方法,通过对量测数据回归分析预测最终位移值和各阶段的位移速率。具体方法如下:

(4)各测试项目的位移速率明显收敛,围岩基本稳定后,进行二次衬砌的施作。

围岩稳定性的综合判别,应根据量测结果按以下方法进行。

⑴按变形管理等级指导施工,见表2。

Uo/3≤U≤2Uo/3

停工,采取特殊措施后方可施工

注:U为实测位移值;Uo为最大允许位移值。

⑵根据位移变化速度判别

净空变化速度持续大于5.0mm/d时,围岩处于急剧变形状态,应加强初期支护。

水平收敛(拱脚附近)速度小于0.2mm/d,拱顶下沉速度小于0.15mm/d,围岩基本达到稳定。

在浅埋地段以及膨胀性和挤压性围岩等情况下,应采用监控量测分析判别。

⑶根据位移时态曲线的形态来判别

当围岩位移速率不断下降时(du2/d2t<0),围岩趋于稳定状态;

当围岩位移速率保持不变时(du2/d2t=0),围岩不稳定,应加强支护;

当围岩位移速率不断上升时(du2/d2t>0),围岩进入危险状态,必须立即停止掘进,加强支护。

围岩稳定性判别是一项很复杂的也是非常重要的工作,必须结合具体工程情况采用上述几种判别准则进行综合评判。

9监控量测质量保证措施

⑴将监测管理及监测实施计划纳入施工生产计划中,作为一个重要的施工工序来抓,并保证监测有确定的时间和空间。各施工单位应由工程技术管理中心组成专门监测小组,具体负责各项监测工作。

⑵制定切实可行的监测实施方案和相应的测点埋设保护措施,并将其纳入工程的施工进度控制计划。

⑶施工监测紧密结合施工步骤,监控每一施工步骤对周围环境、围岩、支护结构、变形的影响,据此优化施工方案。

⑷积极配合监理、设计单位做好对监测工作的检查、监督和指导,及时向监理、设计单位报告情况和问题,并提供有关切实可靠的数据记录,工程完成后,根据监测资料整理出标段的监测分析总报告纳入竣工资料中。

⑸量测项目人员要相对固定,保证数据资料的连续性。量测仪器专人使用、专业机构保养、专业机构检校。量测设备、元器件等在使用前均经过检校,合格后方可使用。

⑹测试完毕后检查仪器、仪表,做好养护、保管工作,及时进行资料整理及信息反馈。

斜井进正洞挑顶施工作业指导书

结合客运专线大断面隧道的特点,介绍了两种由斜井安全转入正洞的施工方法,旨在指导今后类似隧道的挑顶施工作业,或作为今后施工的参考。

⑵《客运专线铁路隧道工程施工质量验收标准》铁建设[2005]160号

⑶《新建铁路福厦线施工图设计文件》

适用于新建铁路福厦线双线隧道Ⅳ、Ⅴ级围岩地段斜井进正洞挑顶施工作业。

斜井施工至与正洞交界后,以圆曲线形式转体进入正洞,同时上坡开挖至正洞拱顶高程,并继续沿相同方向掘进一定距离;形成作业空间后,转向相反方向施工,扩挖临时支护达到正洞标准断面。斜井进入正洞平面关系见图1,斜井进入正洞立面关系见图2,施工程序详见表1。

⑴根据斜井与正洞相交角度,以间距1.0m间距安装异型钢架,完成由垂直于斜井中线到平行于正洞中线的过渡(如图1)。

⑵斜井与正洞交叉口段以0.6m间距架立I25a异型钢钢架,保证相交地段三维受力状态围岩的稳定。在此型钢钢架上焊接I25a型钢横梁,并在横梁两端螺栓连接I25a型钢立柱,为正洞钢架提供落脚平台,见图3所示。以后在此处安装正洞钢架时,用I25a型钢斜梁代替正洞的N2钢架,用I25a型钢立柱代替正洞的N2、N3钢架,见图2所示。仰拱钢架连接在斜井仰拱的预埋I25a型钢上。

⑶斜井进入正洞内的导洞施工

①导洞设计净宽9m,详细结构尺寸见图4。支护参数为:HW125型钢

表1斜井与正洞相交处施工程序表

1、斜井掘进至正洞开挖轮廓线后,在交叉口处施作加强支护及斜交口处支撑架。按确定的曲线半径测设中线。

2、向西安方向开挖一处爬坡导坑。

3、爬坡导坑断面视土质情况可进行调整。

4、交汇段斜井及时施做二次衬砌。

1、按导洞断面,斜向上挑顶开挖至正洞拱顶。

2、开挖爬坡道,直至爬坡道拱顶标高达到正洞拱顶标高。

3、爬坡导坑支护参数按照Ⅳ级围岩错车道支护参数。

1、开挖到导洞顶和正洞顶位于同一高程后,继续向该方向(西安方向)按Ⅳ级围岩开挖方法、支护参数施工上部弧行导坑,施工10米后,喷砼封闭掌子面。

1、然后调头按正洞Ⅳ级围岩施工方案开挖上部弧形导坑,开挖过程中仅对有影响的导洞钢架进行拆除,每开挖0.6m,架一榀钢架,相应完善其他支护。

2、施工中可根据需要开挖一段距离后,暂停该方向(郑州方向)开挖,并喷射砼封闭掌子面,再回头按正常工序进行正洞西安方向的开挖及初期支护。

按照弧型导坑预留核心土法进行正洞施工。

钢架,间距1榀/m,Φ22锚杆,长度3.0m,间距1.0×1.0m,梅花型布置;φ6钢筋网,网格间距0.2×0.2m;喷射C20砼,厚度18cm。支护施工中要严格按施工指南操作,保证锁脚锚杆和纵向连接筋的施工质量。

②爬坡道的坡度设计,应根据土质情况及机械施工需要进行调整,以加快爬坡导坑施工进度,减少不安全因素为原则。

③完成爬坡后,按照线路设计坡度向西安方向按Ⅳ级围岩开挖方法、支护参数继续进行弧行导坑掘进,施工10米后,喷砼封闭西安方向掌子面,反向向郑州方向开挖正洞,每循环先开挖上部,立上部钢架后,再拆除导洞钢架。

反向开挖按正洞Ⅳ级围岩上部弧形导坑的高度进行,先开挖顶部,再开挖两侧,开挖时仅对有影响的导洞钢架进行拆除,按正洞设计要求间距进行钢架施工,相应完善其他支护。开挖分部见图5。

⑤正洞落底后要及时进行正洞仰拱施工,以便初期支护与仰拱尽早成环,确保施工安全。

4.1.2需说明的问题

此文仅针Ⅳ级围岩地段斜井进正洞方案进行了介绍,相应的中导洞支护参数和正洞开挖方法均参照了Ⅳ级围岩隧道的施工设计。当斜井与正洞处于Ⅴ级围岩地段时,中导洞开挖及正洞扩挖时应采取与之相适应的施工方法,相应的支护参数应予以加强,从而确保施工安全。

在斜井接近与正洞相交里程时,逐渐抬高斜井拱顶高程,接长钢架长度。于正洞与斜井相交里程起,采用小导坑进入正洞洞身开挖,于正洞中线处达到正洞拱顶高程,施工中应预留变形沉落量和临时支护厚度。然后再逐步扩挖至正洞标准断面。

⑴根据斜井与正洞设计相交角度及拱顶高差,确定斜井扩挖起始里程HK0+L1,其拱顶抬高坡度控制在30%左右,同时并对该段斜井初期支护应进行加强,确保下步正洞跨越横洞提供支护保障。进入正洞范围后其开挖及初期支护需比正洞拱部相应设计标高加大,以预留临时支护厚度。见图6所示。

⑵考虑横洞到正洞上导拱架落脚位置的牢固性,横洞拱架必须提供一个牢固的落脚平台。在正洞右侧边墙与横洞交界里程HK0+L2处时,沿正洞方向设置拱顶纵向托梁,托梁采用I25a型钢,牢固焊接于横洞钢架拱顶,托梁与横洞钢架间空隙设置Ⅰ25竖向立柱,立柱与正洞拱架位置相对应,牢固焊接并喷射C25砼回填密实。见图7所示。

⑶横洞施工至正洞右侧边墙即L2时,采用人工开挖掏小洞(2m×2m)的施工方法,棚架临时支护及时跟进;与正洞走向垂直上坡到拱顶中线位置后,再逐步扩大施工断面,直至正洞的标准断面。

正洞与横洞相交地段处于复杂的三维受力状态,为保证正洞安全挑顶施工的完成,正洞初期支护必须座落于一个牢固的落脚平台,同时应加强该段正洞初期支护的锁脚锚杆施工,防止拱架下沉。

⑴斜井变断面段施工,应加强初期支护,设计参数应比正常断面相应提高。

由于正洞开挖断面较大,为确保扩顶段正洞施工安全,在横洞与正洞交接处设置一加强环,加强环由3榀Ⅰ25a型钢钢架组成,钢架间采用φ22钢筋连接,喷35cm厚混凝土覆盖钢架。并应及早施作斜井二次衬砌。

⑶设置托梁,为正洞拱架提供落脚平台

在正洞与横洞拱顶交界里程处,沿正洞方向设置拱顶纵向托梁,托梁采用Ⅰ25a型钢,牢固焊接于横洞钢架拱顶,托梁与横洞钢架间空隙设置Ⅰ25a型钢竖向立柱,立柱应与正洞拱架位置相对应,牢固焊接并喷射C25砼回填密实。

⑷加密设置正洞初期支护锁脚锚杆,每榀钢架单侧不少于4根锁脚锚管,锚管长4.0m,注水泥砂浆,锁脚锚管与钢架牢固焊接,防止拱架下沉,。

⑸正洞扩顶开挖,顶部支撑Ⅰ18临时棚架,棚架间距依据围岩稳定状态采用0.6~1.0m,棚架间采用φ22钢筋焊接为整体,挂设钢筋网后复喷C25混凝土20~25cm,形成临时支护体系,管棚结构尺寸见图8。

开挖作业人员20人;钢架、钢筋网及锚杆施工10人;喷射混凝土作业14人。

主要施工机具配置:小型挖掘机2台(或大型挖掘机1台),装载机1台,湿喷机2台,压入式通风机(视斜井长度设置),钢架弯制机1台等。

⑴施工中必须加强围岩量测,根据量测结果及时反馈支护信息,确保支护措施安全合理。

⑵交叉口段斜井衬砌应及早施作,挡头板沿正洞线路方向安设。

⑶斜井与正洞掌子面施工时,应设专人值班,随时观察围岩及支护状态的的稳定性。

⑷制定挑顶施工的安全应急预案,做好应急材料、物资的储备。

隧道内预埋接触网槽型滑道及综合接地施工作业指导书

明确隧道预埋滑槽产品规格、施工方法、施工工艺、操作要点和相应的标准要求。指导、规范隧道滑槽设计、施工、验收,满足设计及规范要求。

明确隧道综合接地施工方法、施工工艺、操作要点和相应的标准要求。

⑴铁道部工程管理中心《关于印发“客运专线隧道内接触网基础接口技术方案协调会会议纪要”的通知》(工管[2006]28号)。

⑵新建铁路福厦线隧道内预留接触网槽型滑道招标的技术规格书及采购合同的技术及商务要求。

⑶铁道第一、第二、第四勘察设计院的施工设计文件和图纸。

3滑槽施工工艺流程及技术要求

⑴台车加工:依据设计要求的位置,在模板台车上开螺栓定位孔。

⑵按照隧道弧度现场制作一个工作台,长约3米,宽约1米。

⑶将两根槽道放置在工作台上,根据设计要求调整槽道间距离,用钢筋或型钢焊接牢固。

⑷槽道粗定位:绑扎第二层网片钢筋时,按照设计位置,测量出槽道位置,并将事先焊接好的成组槽道就位;在槽道后部锚钉处,垂直槽道方向,间隔绑扎几根短筋,长约30cm;将其挂在钢筋网上。

⑸槽道精确定位:台车移动就位到指定位置,顶升模板到位,利用T型螺栓穿过钢模板上预留长孔,找到并调整槽道位置,锁紧螺栓,使槽道紧贴模板,进行精确定位;

⑺衬砌脱模:T型螺栓螺母松开后,旋转900取出螺栓,收回模板脱模。

3.2T型螺栓与摸板连接

⑴在台车模板上开安装孔,单根槽道固定点为两处(槽道两端部各一处)。开孔原则:应结合槽道预留台车模板布置图进行优化,减少模板开孔数量;针对一组平行双槽道,建议一根槽道上开A型孔标准尺寸为:150mm×42mm,另一根槽道上开B型孔标准尺寸为:22mm×42mm;针对单根槽道,建议槽道上开A型孔标准尺寸为:150mm×42mm;

⑵提前将槽道固定点位置的填充泡沫扣除;台车移动就位后,油缸顶升拱顶,拱腰模板,与网片钢筋上固定的槽道接近贴住后,通过A型安装孔调整槽道位置,进行模板上精确定位;

⑶将T型螺栓放入槽道,水平旋转90º,可参考T型螺栓安装外部检查标准(即后部压痕垂直于槽道方向),扭紧螺母。针对A型孔需要采用可靠的封堵,确保局部不会出现漏浆,脱模后造成外观缺陷。

⑶交接验收标准包括产品本身的检验验收和预埋件施工安装的验收。

⑷施工单位应根据产品的技术条件和设计单位的设计文件(包括图纸)制定相应的施工组织设计、施工技术管理制度、施工操作细则或作业指导书、施工技术安全措施和施工质量控制措施等。

⑸施工中,施工单位应按有关工程质量管理办法,严格施工质量自查,隐蔽工程应会同工程监理进行随工检验。

⑹除应按本试行标准执行外,尚应符合国家和铁道行业现行的有关强制性标准的规定。

⑴埋入件的规格型号符合设计要求

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑵埋入件的锚固抗拔力符合设计要求。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑶纵向跨距符合设计要求,允许偏差为±500mm;横向允许偏差为±50mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑷槽型滑道嵌入混凝土的位置符合设计要求,允许偏差为不大于5mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑸槽型滑道在混凝土的位置符合设计要求,单独槽道的倾斜允许偏差为不大于3mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑹同一悬挂点的两组槽型滑道位置符合设计要求,两者在顺线路方向的间距允许偏差为±4mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑺接触悬挂用槽型滑道垂直线路的位置符合设计要求,与无偏斜理论定位中心线的允许偏差为不大于±16mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑻附加导线用槽型滑道垂直线路的位置符合设计要求,与无偏斜理论定位中心线的允许偏差为不大于±5mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑼上、下行两组吊柱用槽型滑道在顺线路方向的距离符合设计要求,允许偏差不大于±100mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

⑽上、下行附加导线用槽型滑道在垂直线路方向的距离符合设计要求,允许偏差不大于±100mm。

检验数量:施工单位全部检查,监理单位抽检数量不小于30%。

隧道内接触网滑槽及AF线预留处的衬砌内预埋环向接地钢筋,采用φ16mm圆钢,为隧道顶部接触网提供悬挂接地。为保证接地电阻的要求,在隧道内每个专用洞室底板下方做钢筋网作为接地体,接地钢筋网与纵向贯通地线要求可靠连接。

接触网滑槽安装到位之后,沿滑槽牢固焊接φ16mm圆钢,分别在左右段电缆槽内出露,露出长度不小于110mm,以便于焊接作业。每组滑槽之间采用纵向φ16mm钢筋连接。

AF线预留采用环向φ16mm钢筋牢固焊接,分别在左右侧电缆槽内出露。

接地母排每两组滑槽间距分左右埋设φ50HDPE管江西省城市详细规划人民防空设施配置导则(试行)(赣自然资发[2019]10号 江西省自然资源厅/江西省人民防空办公室2019年12月7日).pdf,相应一侧的预埋管设置应距左右半环接地钢筋10m左右。

所有环向接地钢筋与贯通地线应可靠连接。

所有连接均采用焊接方式,焊接长度不小于90mm、厚度不小于4mm。

贯通地线的接地电阻值应不大于1Ω。

接触网槽型滑道、综合接地安装一般需劳力3~5人。施工主要机具电焊机1台,钢筋切割机1台。

⑴施工前仔细阅读设计图纸,了解设计意图和设计要求,必要时邀请设计单位进行技术交底。

⑵应注意二次衬砌施工缝、沉降缝对预埋滑道槽的影响,施工前应仔细审核图纸GBT 14048.16-2016标准下载,提前做好计划。

⑶滑道槽安装时,除固定点位置的填充泡沫扣除外,其余段泡沫要注意保护,以免混凝土浇筑时进入滑道槽内。

©版权声明
相关文章