施工组织设计下载简介
内容预览随机截取了部分,仅供参考,下载文档齐全完整
高速公路连续刚构特大桥施工组织设计(双肢薄壁空心墩)静浆搅拌机、维卡仪、沸煮箱
胶砂搅拌机、震实台、抗折机
万能材料试验机、冷弯冲头、钢直尺、钢筋打点机
砂石标准筛、振筛机,天平
DB/T 62-2015标准下载JTJ058-2000
广口瓶、容积升、天平、台称
切割机、磨平机、万能材料试验机
JTJ054-1994
JTJ053-1994
JTJ053-1994
砼搅拌机、振振动台、压力机、万能材料试验机、标养箱
JGJ/T55-2000
JGJ/T98-2000
切割机、万能材料试验机
JTJ024-1985
考虑该项目任务重、工期紧的情况,根据与项目公司签订的年度目标,合理配置资源,确保按合同要求的施工工期完成施工任务。
根据设计图纸和相关规范要求,结合现场实际情况,因地制宜,遵循“适用、可靠、先进、经济”的原则,最大限度的方便施工组织。
XX特大桥的施工顺序为桩基全面开工,1#墩采用二套墩身圆模和二套盖梁模板逐次浇筑墩柱及盖梁。2#、3#、4#、5#、8#过渡墩承台利用提前进场的主墩钢框木模先行施工,墩身各采用一套翻模施工。因桩基深度不一致,主桥6#墩、7#墩承台采用一套模板先后浇筑,墩身各采用一套多卡液压爬模系统进行施工,主桥上构各用一套挂篮进行悬臂浇筑。9#~13#墩圆模和系梁及盖梁模板根据不同墩径各配置两套模板逐墩施工。
原设计桩基为钻(挖)孔桩,根据实际的地形情况,由于现场无法安置大型的钻孔机械,且由于工期紧,桩基需全面开孔,项目部决定在做好安全措施的前提下,所有桩基均按挖孔桩施工,但根据各桩基的地质情况不同,采用不同的护壁形式和厚度。
在承台孔桩开挖前,先对承台进行开挖,开挖后可同时施工承台C25砼垫层,以节约工期。桩孔开挖采用人工开挖,配合机械打眼,浅孔松动爆破,护壁防护的成孔法进行施工。
引桥承台土质基坑开挖采用以挖掘机开挖为主,人工配合清底修边。对于岩石基坑,则采用机械打眼,浅孔松动爆破,风镐清底的方法开挖。基坑检查合格后,然后在其上放线,现场绑扎钢筋,模板采用平面钢模,混凝土在拌合站拌合,根据现场条件分别由罐车运送或使用砼输送泵输送砼,均匀布料分层浇筑,插入式振动棒振捣。
承台基坑在桩孔开挖之前,已基本开挖到位,待各桩孔浇筑完成后,对开挖出的承台基坑底面,浇筑C25混凝土垫层。完成后,测量放样,绑扎承台底部三层钢筋,然后立模,浇筑混凝土。
桥台模板采用承台的大块钢模和组合钢模夹木模,外露面用大块钢模,混凝土在拌合站集中拌合,罐车运输,泵送入模,振动棒振捣,台身与台背一次浇筑成型。
1#墩、9#~13#墩为柱式墩,柱式墩采用定型钢模,在墩身四周搭设脚手架,模板的支撑靠自身支撑,风缆固定。模板固定采取在模板外侧加槽钢背肋,拉力钢筋加固在模板外侧槽钢上。钢筋在墩身上绑扎成形。砼拌合站集中拌合,砼罐车运送,泵送入模,插入式振动棒捣固,塑料薄膜覆盖养生。墩身不高,采用一次浇筑成形,墩身较高,采取分节浇筑成形的方法进行施工。
6#、7#主墩施工采用多卡液压爬模进行施工。每次浇筑高度4.5米,循环作业,塔吊配合提升配件和钢筋。
5#、8#过渡墩及2#~4#薄壁空心墩采用无支架翻模施工,塔吊配合提升模板和钢筋。
砼由拌合站集中拌合,砼罐车运送,泵送入模,插入式振动棒捣固,塑料薄膜覆盖养生。
本合同段主桥上构为大跨度连续刚构,主要施工项目为:零号块施工、1#~17#段施工、边跨现浇段施工、中跨合拢段施工、边跨合拢段施工等几个方面。悬浇共投入挂篮2套,每套各重120t,均为新加工挂篮。零号段施工采用在墩顶预埋预埋件,在预埋件上拼装万能杆件托架,然后在托架上铺设纵、横槽钢分配梁及方木,最后铺设底模、绑扎钢筋、支立侧模、浇筑混凝土。
0#块浇筑完毕后,即可拼装挂篮,进行1#~17#悬臂段的施工。悬臂段挂篮采用菱型挂篮,每套重量约120t。挂篮采用塔吊配合拼装完毕后,需要进行荷载试验,以检验挂篮的安全性和测出挂篮的弹性变形,以利于悬灌施工中的线性控制。施工程序为:移动(安装)挂篮→调整标高、中线→绑扎底板及腹板钢筋及预应力管道布置→内模就位→绑扎顶板及预应力管道布置→浇筑砼→砼养生→预应力张拉→移动挂篮,进入下一循环。合拢段利用挂篮合拢施工,浇筑时间选择一天中的低温、恒温时段,温度控制在10~15℃。梁部砼施工集中拌合,砼罐车运输,泵送入模,其它材料及机具用塔吊运输,人员上下用施工电梯。
XX特大桥引桥共11跨44片40米预应力混凝土箱梁,预制场设在0#台后路基和15#台后路基,1#预制场箱梁由0#台向5#墩逐孔架设,2#预制场箱梁由14#台向8#墩架设,架桥机采用双导梁架桥机安装。
基础工程的施工方法及工艺
本桥梁桥位地形起伏很大,桥梁桩基处在交通极为不便的地势陡峻山坡上,无法采用机械进行钻孔,必须采用人工挖孔施工桥梁桩基。人工挖孔桩施工过程直观、工程质量较钻孔桩易于控制,但挖孔桩井下作业条件差、环境恶劣、劳动强度大,安全显得尤为重要。
由于主墩最高墩身达114米,为全桥工期的控制节点,故主墩的桩基安排同时开挖,以节约工期。根据现场情况,结合设计要求,首先对承台平台进行开挖,达到承台基础标高后,对开挖后的边坡按设计进行防护,在桩基施工过程中可同时对承台C25砼垫层进行施工,可保证施工现场有序,并减少施工干扰,加快施工进度。这样既减少了桩基开挖时的互相干扰,排除了安全隐患,也同时保证了施工进度、施工安全和环境保护。
挖孔时每层爆破清孔后用垂球检查挖孔偏心情况,及时纠正孔位偏差。孔位偏差群桩控制在10cm内,单排桩控制在5cm内,倾斜度不大于0.5%。挖孔到设计高程后,应把孔底清理平整。挖孔过程中应详细作好挖孔地质记录,以供验孔时检查,以决定桩孔是否加深。
由于桥位地面坡度较陡,施工便道难度大,部分桩位吊车不能到达施工现场。钢筋笼制作根据施工现场便道能否到达采用统一分节制作及现场制作两种。施工便道能到达施工现场,钢筋笼长度可根据设计长度和吊车的工作长度制作,钢筋笼的下料、加工均在钢筋加工场完成,运至孔位旁后焊接、绑扎成形,并编号存放。对于桩身过长,钢筋笼分节制作的,则在孔口吊装时焊接接长。对于施工便道不能到达施工现场的,则在孔口搭设脚手架,在孔口进行现场制作安装。钢筋笼加工制作必须符合规范和设计要求,主筋接头在同一截面小于50%,主筋接头采用直缧纹连接。钢筋笼制作的误差范围是主筋间距±10mm,箍筋±20mm,骨架外径±10mm,骨架倾斜度±0.5%,保护层厚度±20mm,为保证钢筋笼的保护层厚度,在每节钢筋笼设3道保护层控制耳环,骨架顶端设置吊环。
进场的钢筋、下好的料、加工成型的钢筋笼均需注意防锈并加以标识。
吊装钢筋笼用吊车吊装,吊装时应按骨架长度及编号入孔。在吊装时为防止钢筋笼变形,应对钢筋笼进行径向加固。对于分节加工的钢筋笼,第一节钢筋笼入孔后用型钢临时穿支在锁口上,然后吊装第二节钢筋笼,轴线与第一节对准后,进行接头连接,以此类推,直到全笼完成。钢筋笼下落时要平稳,不许摆动,防止钢筋笼碰撞护壁,产生变形。钢筋笼吊装误差为中心位置20mm,顶端高程±20mm,底面高程±50mm。
按规范和设计要求数量正确埋设超声波检测管道,并在施工中注意保护其不被损坏、移位和堵塞,检测管内径不小于5cm。
对于孔底无水或地下渗水量较少的桩孔,采用普通混凝土浇筑法进行浇筑。浇筑前先连接好串筒,串筒连接时,必须保证各串筒间的牢固,使其能抗混凝土的冲击力。捣固采用插入式振动棒分层捣实。混凝土下料时,下料量得保证每层厚度不超过30cm。每层捣固时,应保证每次振动棒插入下一层5cm。
普通混凝土浇筑桩浇筑时,混凝土面应高出设计标高10~20cm,待混凝土强度达到20Mpa后再将其凿除,以保证与承台接触面砼的强度。
如桩底渗水量较大,不能按普通混凝土浇筑施工,必须按水下混凝土浇筑施工。
导管采用φ300的无缝钢管,每节3m,最底节6m,配2节1m调节段,用来调节导管高度。
在下导管前,要对导管进行认真检查其是否损坏,密封圈,卡口是否完好,内壁是否圆顺光滑,接头是否紧密。对导管做水密、承压、接头抗拉试验,以检验导管的密封性能、接头抗拉能力,符合规范要求方可下导管。质量不可靠的导管不准使用。
下导管必须有专人负责,导管必须居孔中心,下导管时应防止导管碰撞钢筋笼,使钢筋笼发生变形。导管距离孔底25~40厘米。
混凝土原材料及配合比应符合规范要求。
混凝土浇筑是十分重要的工序,必须严格组织,操作人员与机械密切配合,场地平整,材料充足且符合规范要求。所用的混凝土运输车、吊车等运转正常,保证正常供电,且备用发电机。混凝土采用拌合站拌合,另一台备用,以防拌合站发生故障。
混凝土采取导管水下浇筑法。混凝土采用混凝土运输车运至孔口,初灌量要进行准确计算,以保证导管初埋深度不小于1.0m和填充导管底部需要。砼开始浇筑后必须连续进行,不可中断。浇筑过程中下第一斗料,均要测量混凝土面高度,及时调整导管埋深,导管埋深应控制在2~6m为宜。混凝土运至桩位时应检查其均匀性和坍落度,坍落度控制在20±2cm为宜,如不符合要求应进行二次拌合,二次拌合后仍不符合要求则不得使用。在浇筑混凝土前,为防止钢筋笼上浮,用4根φ20钢筋将钢筋笼固定于料斗支架上。
为了保证桩体的质量,砼浇筑应高出设计桩顶高度0.5~1.0m。
在混凝土浇筑过程要注意做好浇筑记录,并与设计数量相比较,以检查成孔质量。
全部混凝土浇筑完成后,应缓慢吊出导管,清理场地,进行下一根桩的混凝土浇筑。
桩身混凝土达到龄期后即可进行检测。包括压混凝土试件和在现场进行超声波无破损检测。经检测一个承台的所有桩均合格后,即可进行承台施工。
本桥承台混凝土的体积大、施工聚集的水化热大,在混凝土内外散热不均匀,以及受到内外约束的情况时,混凝土内部会产生较大的温度应力,导致裂缝产生,为结构埋下了严重的质量隐患。因此,大体积混凝土施工中的温度监控是控制裂缝产生的关键。
由于承台承重较大,决不允许出现有害裂纹,为满足《质量检验评定标准》要求,试配强度按照fcut=fcuk+1.645σ公式(式中fcuk表示混凝土立方体抗压强度标准值)计算结果作为参考,保证具有95%的保证率,并经过多次试配确定。坍落度需要满足施工要求,并保证在一小时之内无明显损失。选用普通硅酸盐水泥,有效地降低混凝土内绝热温升,达到低水化热品种的水泥效果,掺加适量的Ⅱ级粉煤灰和复合型高效缓凝泵送剂,以改变混凝土流变特性及降低水泥水化热。控制混凝土的粗骨料采用5~40mm连续级配的碎石,针片状颗粒含量不应大于10%,泥量不大于1%,细骨料采用优质中粗砂,含泥量不应大于3%,细度模数控制在2.5左右。
水泥:采用普通硅酸盐水泥;
石子:采用5~40mm连续级配碎石,含泥量小于1%;
砂:采用中粗砂,Mx=2.45~2.55,含泥量小于3%;
粉煤灰:采用Ⅱ级粉煤灰;
外加剂:采用优质高效泵送剂。
混凝土在拌合站集中拌合,罐车运输至承台附近后用输送泵泵送,混凝土采用分层连续浇筑,一次成型,分层厚度宜为30cm左右,分层间隔浇筑时间不得超过试验所确定的混凝土初凝时间,以防出现施工冷缝。
承台上设置多处下料软管,以利下料均匀。
混凝土振捣采用插入式振捣器,振捣深度插入下层不大于5cm,保证下层在初凝前再进行一次振捣,使混凝土具有良好的密实度,防止漏振,也不能过振,确保质量良好。
每次浇筑必须按规范留足强度试件。
合理选择原材料,优化混凝土配合比。
混凝土结构内部埋设循环水冷却管和测温点,通过冷却水循环,降低混凝土内部温度,减小内外温差,控制混凝土内外温差小于20℃,通过测温点测量,掌握内部各测点温度变化,以便及时调整冷却水的流量,控制温差。
冷却水管埋设。冷却循环水管采用φ50*6mm黑铁管,进水管口设在承台一侧中心线,出水管口设在另一侧两边沿。每层水管水平布置,层距为80cm移动门式脚手架专项施工方案,共设5层,水平间距为1.2m,布置时严格按照设计要求布置。
冷却水管安装时,要以钢筋骨架和支撑桁架固定牢靠,以防混凝土浇筑时水管变形及脱落而发生堵水和漏水,并做通水试验。
每层循环水管被混凝土覆盖并振捣完毕,即可在该层水管内通水。通水持续14天。循环冷却水的流量可控制在1.2~1.5m3/h,使进、出水的温差不大于6℃。
冷却水管使用完毕,需压注水泥浆封闭。
拌合混凝土用水,采用河底深水井的水,其水温较低。
降低混凝土入模温度,入模温度不大于28℃。
大体积混凝土的裂缝,特别是表面裂缝,主要是由于内外温差过大产生的。浇筑后,水泥水化使混凝土温度升高,表面易散热温度较低,内部不易散热温度较高,相对地表面收缩内部膨胀,表面收缩受内部约束产生拉应力。通常这种拉应力较小,不至于超过混凝土抗拉强度而产生裂缝。但由于混凝土外部受太阳曝晒、雨水、冷空气等的袭击,也会使表面升降温差较大。因此,养护是防止混凝土开裂的关键。混凝土浇筑完毕后必须用草袋覆盖,加强保湿。保湿养护,延缓降温速率,养护期间不得中断冷却水的供应,要加强施工中的温度监测和管理,及时调整保温及养护措施。大体积砼浇筑完成后,设专人检测和管理,测温时间不少于14天,前7天每隔4小时测温一次,后7天每8小时测温一次,当温差小于25℃时可停止测温。
桥梁基础工程施工是整个桥梁施工的重要部分,我们将在质量、安全、环境保护等方面采取以下技术措施达到规范要求。
所有进场的水泥必须是经项目办批准指定厂家生产的,有出厂合格证明,同一根桩,同一个承台JB/T 13583.2-2019 数控管螺纹车床 第2部分:技术条件.pdf,不能用品种不同、标号不一、厂家不同的水泥,库存超过3个月的水泥必须进行复验。