标准规范下载简介
GY/T 339.2-2020 有线电视网络大数据技术规范 第2部分:平台要求.pdf大数据bigdata 具有体量巨大、来源多样、生成极快、多变等特征并且难以用传统数据体系结构有效处理的包含大 量数据集的数据。 [来源:GB/T35295—2017,定义2.1.1] 3.2 大数据参考体系结构bigdatareferencearchitecture 一种用作工具以便于对大数据内在的要求、设计结构和运行进行开放性探讨的高层概念模型, [来源:GB/T35295—2017,定义2.1.3]
数据中心data center
GY/T339.2—2020SSD固态盘(Solid StateDisk)XML可扩展标记语言(ExtensibleMarkupLanguage)5概述大数据平台实现对运营机构经营和系统运行维护过程中产生的各类大数据的采集、接入、处理、存储、分析、展示、共享和管理,为大数据消费者提供数据和服务,以及为运营机构间的数据交换提供统一接口。图1采用GB/T35589一2017中关于大数据参考体系架构的定义,采用角色、活动、组件等逻辑构件描述有线电视网络大数据平台(以下简称大数据平台或平台)的组成和业务逻辑。关于大数据参考体系架构,以及角色、活动、组件的描述见附录A。门户服务精准营销精细服务精益网运收视评价企业合作大数据数据共享应用运维管理数据展示数据开放数据能力建设服务能力展现/申请/运营有线电视网络大数据源例行操作运维管理数据上报BSS域数据运行维护子系统加载离高线分析流式分析OSS域数据资源管列式数据库转换预交互式分析支撑组件理框架据MSS域数据处清洗图数据库数据一批处理内存计算平台侧数据抽取等保管理关系数据库存储流处理图计算计算等保定级其他框架文件系统理定级测评批流混合计算网关输入API翰出API采集展示采集配置C采集通信安全元数据集数据源配置置实时采集与采集监控管接入批量采集边界安全格式转换计算安全业务安全基础基础系统安全机房设施广计算资源广存储资源网络资源配套资源子系统安全运行子系统图例:数据流组件活动(角色)子系统图1大数据平台示意图大数据平台由数据核心子系统、基础资源子系统、安全运行子系统和运行维护子系统组成。数据核心子系统是大数据平台的核心组成部分,由数据采集接入、数据存储、数据处理、数据分析,数据服务、资源管理等框架组成,负责实现数据输入、计算处理和输出功能,以及对外开放大数据平台的数据服务功能。基础资源子系统为大数据平台提供机房、计算资源、存储资源、网络资源等基础服务,安全运行子系统和运行维护子系统为数据处理提供基本保障。大数据平台应支持采集、接入、处理运营机构的BSS、OSS、MSS数据,广告、媒资、用户收视行为、用户体验数据,以及网管、门户网站等数据,具体支持的数据内容如图2所示。上传到大数据平台的数据,其格式和交互方式应与GY/TXXX.1一XXXX的要求相符,例如大数据平台应具备采集接入符合GD/J0752018要求的数据。3
GY/T 339. 22020
JTC5142一2019公路沥青路面养护技术规范6. 1. 4 性能要求
a 采集接入实时数据时,应具备实时接入全网实时数据的能力,并在不超过3s内将接收的实时 数据存入大数据平台的数据存储系统; b 采集接入BSS离线数据时,应具备1h内完成当日增量数据接入的能力; C 采集接入OSS离线数据时,应具备1h内完成当日增量数据接入的能力; d 采集接入MSS离线数据时,应具备1h内完成当日增量数据接入的能力; 采集接入其他离线数据时,应具备1h内完成当日增量数据接入的能力。
6. 2. 1 基本要求
要求如下: a 应支持存储结构化数据、半结构化和非结构化数据; b) 应支持数据上传、数据下载、目录查看、目录创建、目录删除、权限修改等操作; 应具备标准、开放的数据访问API,以支持对数据的操作; d 应支持对用户访问进行授权; 应具备数据加载工具或功能,使系统和关系型数据库、其他文件系统之间可进行数据和文件交 换; 应支持存储调度,可按用户计划对存储节点的迁移、扩容、复制、更改、删除等进行自动操作; g 应支持文件分级存储,如单机级、跨服务器级、跨机柜级、跨数据系统级: h) 应支持为用户设置不同的数据存放策略; i 应支持为单个用户提供逻辑存储空间; j 应在多用户之间设置数据隔离机制; k 应支持在数据源端去重处理; 应支持表管理功能; m 应支持负载均衡,负载均衡切换过程中,业务应不中断; n 应支持对关系型数据库的不同数据实例制定独立的数据备份策略; 0 宜支持数据自动备份和手动备份; P 宜支持数据批量更新、删除等数据管理操作; q 宜支持流式实时数据入库和实时查询。
6. 2. 2 文件系统
a)应支持文件的上传、下载、读写、复制、移动、删除、访问控制等; b)应具备文件容错机制和系统高可用机制,包括数据块备份、系统快速恢复等功能:
GY/T 339. 22020
c)应支持文件数据的校验和同步,保证数据的完整性与一致性; 应支持分布式文件系统的弹性扩展,支持节点动态添加和删除; 应支持压缩和加密存储的数据; 应支持快速检索,如数据资源的统一检索、编目、增加和删除; g 应支持文件的搜索、批量操作、回收站、快照; h 宜支持小文件打包为大文件集中存储; 宜支持存储配额管理,可基于目录存储空间及文件数量进行配额控制: 宜支持分级存储的功能,如根据数据的使用热度、时延要求等特性将数据分别存储在SSD、HDD 等介质中。
6. 2.3. 1关系数据库
要求如下: a)应支持结构化数据存储机制,实现数据存储的可扩展性; b) 应支持多表关联; C) 应支持数据存储一致性检查,实现数据的完整性与一致性 宜支持行列混合存储,支持表按行或列格式组织存储; e)宜支持行列转换
6. 2. 3. 2列式数据库
要求如下: 应支持以键值形式进行数据存储; b 应支持基于表、列族和列的用户权限管理,权限管理操作包括读、写、创建等; 应支持对数据库中的列进行加密; d 应支持数据的备份与恢复,包括库级别的备份和恢复,并提供备份恢复进展、历史记录查看等 功能; e 宜支持多级索引; f) 宜支持将多个具有类似功能或存在关联关系的业务表进行合并存储
6.2. 3.3图数据库
a)应支持由节点及边组成的数据模型; 应支持图查询、图遍历、图分析、图挖掘等; C 应支持主流开发接口; d) 应支持单节点、多节点多层关系扩线查询,支持广度优先、深度优先、最短路径、最优路径遍 历搜索算法; e 宜支持顶点、属性的继承操作; g 宜支持长任务异步会话机制
6. 2. 4 性能要求
GY/T 339. 22020
b)缓存数据库,响应时间应小于10mS,I0能力应不小于10000条每秒; 负载均衡切换时间应小于10s; d)存储处理设备CPU忙时平均利用率宜小于70%; e)存储处理设备内存忙时平均利用率宜小于80%; 底层存储的穴余保护能力应不低于RAID“0+1”方式; 恢复备份系统中的数据库时,恢复时长应小于6h; h)备份数据库到备份系统时,每天的备份时间应小于6h
要求如下: a 分布式数据库应支持CPU、内存、GPU等异构资源调度和配置; b)分布式数据库应支持计算框架的水平扩展: 应支持任务优先级调度,能定义不同优先级的任务,使得后启动的高优先级任务能够获取运行 中的低优先级任务释放的资源; d 应支持对全局资源的集中管理; 应支持静态资源分配策略和动态资源分配策略; 分布式数据库应提供与组织相匹配的层次结构,应支持多层次的队列资源管理,队列的资源应 严格隔离,队列获得的资源应不超过分配给该队列的上限: g 分布式数据库应支持弹性资源与抢占,即当有空闲资源时,租户可以使用超过其配置资源,以 提高系统整体的吞吐量;当系统繁忙,其他租户无法拿到配置应得的资源时,当前租户超过配 置部分的资源可以被其他租户抢占,以保证各租户的服务质量; h 分布式数据库应支持资源管理、作业调度和数据加载,以及各种分布式计算框架的调度; i)分布式数据库宜支持按照任务间的依赖关系自动调度任务,以提高处理系统的自动化程度; J 分布式数据库宜支持根据作业需求动态分配计算资源,自动管理回收资源; K 分布式数据库宜支持自动完成作业调度,并支持作业内多任务以无回路有向图形式描述的依赖 关系; 1 分布式数据库宜支持复杂任务的调度,如支持深度学习的训练、MPI任务
GY/T 339. 22020
应支持从数据源中获得实时消息数据,完成高吞吐、低延退的实时计算,并将结果输出到消息 队列或者进行持久化; b 应支持对消息处理任务进行创建、浏览、中止、激活、去激活等操作,并记录用户级别的操作 到审计日志中; C 应支持创建滑动窗口方式的实时分析任务,其时间窗口大小应可调; 应支持通过SQL或者类SQL接口对数据进行操作; e 应支持容错性,在出现故障时具备容错处理机制。
a)应内置图数据查询类API; b 应支持以同步计算模型或异步计算模型的迭代算法; 应支持明细数据全量导入、增量导入以及自定义导入; 2 应支持内存计算和索引,支持在线图分析和查询: 2 应支持基于属性图模型的图数据表达,包含结点/边上的标签和属性类型定义; f 应支持内置常用图指标计算功能,以描述图的拓扑结构特征; 应支持实现水平扩展的分布式图计算和查询; h 应支持图数据的并发查询。
a)应支持基于内存的分布式计算; D 应支持水平扩展; 应支持自动负载均衡; 应支持多种数据类型的离线分析,包括结构化数据、半结构化数据、非结构化数据的离线分析; 宜支持高度抽象算子,以快速构建分布式数据处理应用; 宜支持标准SQL语法; 宜支持与非关系型数据库对接,以在不迁移数据的前提下读取非关系型数据库中的数据并进行 计算。
6. 3. 6 批流融合计算
要求如下: a)批处理集群容量的水平扩展能力应不小于1000个节点; b)在正常情况下,数据处理系统文件系统的10请求响应时间应小于500ms; c)在正常情况下,数据处理系统处理消息的响应延迟应小于500mS。
GY/T 339. 22020
数据分析过程由数据预处理、支撑能力、分析与挖掘过程、流程编排环节组成。通过数据分析过程, 将数据信息转换为知识。数据分析的基本过程包括:对原始数据进行预处理,加载数据到分析系统,通 过预置的分析工具库,执行检索查询、机器学习、统计分析、可视化等操作。一个完整的数据分析系统, 通常还包括配置管理和任务流程编排功能
6.4. 2数据预处理
6.4.2.1数据抽取
要求如下: a) 应支持按照需求抽取存放在文件系统、数据库中的文件或数据; b 对结构化、半结构化、非结构化数据,应支持不同的抽取方法; 应支持全量抽取及增量抽取模式; d) 应支持主动抽取和被动追加方法; e 应支持定时批量抽取; 宜支持分布式数据抽取,数据抽取过程支持负载均衡
6.4.2.2数据清洗
要求如下: a)应支持检查数据一致性,支持清洗掉不一致的数据; 应支持处理无效值,包括对无效值的删除、修正等; 应支持处理缺失值,包括对缺失值的填充或缺失值对应数据条目的删除等; d) 应支持处理重复值,包括对重复数据值的合并或删除等; e) 应支持对比清洗前后的数据,方便使用者检验清洗效果; f)宜支持逻辑矛盾和关联性验证,支持清洗不合理的数据
6. 4. 2. 3数据转换
a)应支持对清洗后的数据按照分析模块的要求进行转换操作,支持结构化数据的列转换、行转换 和表转换; b)宜支持非结构化数据、半结构化数据的结构化处理; c)宜支持对文本、网页类数据的规范化处理,将文档类数据转化成单一规范形式; d)宜支持对语音/音频数据的识别处理,将语音的词汇内容转换为计算机可读的输入; e)宜支持对图片中的内容转换为字符文本,支持提取图像信息。
6. 4. 2. 4 数据加载
GY/T 339. 22020
a)应支持把经过清洗和转换之后的数据加载到分析系统,为分析功能模块提供数据。 b 宜支持全量加载,即按照加载目标结构,将转换过的数据输入到目标结构中。若目标结构中已 存在数据,则装入新数据进行覆盖。 C 宜支持增量加载,即如果目标结构中已经存在数据,在保存已有数据的基础上增加新的数据 当输入的数据记录与已经存在的记录重复时,则丢弃新输入的数据,或将输入的记录作为副本 进行增加。 d)应支持实时加载或者批量加载,
6. 4. 3分析支撑
6.4.3.1检索查询
6.4. 3. 1.1查询接口
要求如下: a)应支持标准的数据库查询接口; b)应支持RESTfulAPI查询接口。
要求如下: a)应支持标准的数据库查询接口; b)应支持RESTfulAPI查询接。
6. 4. 3. 1. 2 查询优化
要求如下: a 应支持基于规则的查询优化; b 应支持建立数据索引,提高查询效率; c 应支持数据分片和多副本技术,优化查询速度; d) 应支持通过SQL进行复杂条件高并发查询; e) 应支持精确查询和模糊查询; f)宜支持二级索引
要求如下: 应支持基于规则的查询优化; b) 应支持建立数据索引,提高查询效率; c) 应支持数据分片和多副本技术,优化查询速度; 应支持通过SQL进行复杂条件高并发查询; eJ 应支持精确查询和模糊查询; f)宜支持二级索引。
6.4.3.2机器学习
6. 4. 3. 2. 1数据管理
要求如下: a)应支持将输入数据划分为训练集、验证集和测试集; 应支持导入和导出机器学习模型,支持导入训练和验证过的模型到分析系统中,以及导出训练 所得的模型: C)宜支持多种数据模型的融合应用。
6. 4. 3. 2. 2 算法
要求如下: a 应支持回归与分类算法: b) 应支持聚类算法; c 应支持协同过滤算法; d) 应支持降维算法; 应支持频繁模式挖掘算法; f 宜具备机器学习流程的其他组件,如特征提取、特征转换、特征选择、模型选择、交叉验证、 模型调优等:
g)宜支持通过二次开发增加新的指令算子
GY/T 339. 22020
6.4.3.2.3任务管理 要求如下: a)应支持对不同的机器学习算法编排不同的数据分析流程,以得到适用于特定分析场景的机器学 习模型; b)宜支持对机器学习任务进行分布式计算。
6. 4. 3. 2. 3任务管理
6. 4. 3. 2. 4模型评估
宜提供用于评估算法模型的模块。
宜提供用于评估算法模型的模块。
6.4.3.3统计分析
要求如下: a 应支持基本的数值分析统计,如最大值、最小值、求和、总数等统计量; 6 应支持数据集中趋势的分析统计,如平均数、中位数、众数等统计量; c) 应支持数据离散程度的分析统计,如极差、方差、标准差等统计量; d) 应支持分析多个随机变量的关系,如协方差、相关系数等统计量; e 宜支持自定义统计分析模板,并可保存常用的分析方案为模板。
要求如下: 应支持将常见的数据源的格式作为输入; O 应支持可视化展示高维数据; 具备可视化工具库,要求如下: 1) 应支持柱状图; 2) 应支持饼图; 3) 应支持折线图; 4) 应支持表格; 5) 宜支持散点图; 6) 宜支持雷达图: 7) 宜支持网络图; 8) 宜支持时间线: 9) 宜支持热力图; 10) 宜支持地图; 11)宜支持桑基图; 12) 宜支持双轴图; 13)宜支持箱线图; 14)宜支持与算法模型
6. 4. 4. 1分析模式
6.4.4.1.1离线数据分析
GY/T 339. 22020
要求如下: a) 应支持结构化查询语言; b 应支持对离线数据的分布式分析; C) 应具备支持第三方应用的标准接口; d) 应支持分布式计算或并行计算等计算框架; e) 应支持对海量工作任务的切分和分布式调度; f) 应支持集成第三方机器学习算法库; g 宜支持使用内存或SSD存储作为缓存; h) 宜支持对文本类、音视频类以及图像类数据的分析; 1 宜支持对关系型数据库和大数据存储系统中的数据源进行交叉查询、聚合、关联操作; 宜支持使用GPU对特定算法进行加速
6.4. 4.1. 2 流数据分析
6.4.4.1.3交互式联机分析
6. 4. 4. 2 分析类型
6.4.4.2.1预测型分析
要求如下: a)应支持趋势预测、回归分析等分析方法; b)应将准确率数值化; )宜通过可视化的方式展示分析结果:
d)应支持存储和发布训练好的模型
6.4.4.2.2描述型分析
GY/T 339. 22020
要求如下: a 应支持相关关系分析方法; b 应支持可视化展示样本数据的分析结果,支持展示模型的训练效果,支持存储和发布训练好的 模型; C)宜优化分析结果的呈现,提高用户体验
6. 4.5 流程编排
6. 4. 6 性能要求
要求如下: a)应支持万亿级数据联表,每天I0能力达到PB级; b)分析系统的数据吞吐能力应不小于400MB/s。
6.5. 1 功能要求
安求如 a 应具备数据展示模板,提供模板继承和整合功能; b 应提供数据展示界面和数据展示服务接口; 数据展示服务应能兼容不同数据格式: d 宜通过缓冲、内存计算、压缩传输等方法,提高展示的响应速度; e 应支持结构数据(包括多维数据)、半结构数据、非结构数据的展示; 应具备可扩展性,可通过二次开发,支持新的数据类型和可视化技术; g 应支持以下展示形式: 1) 结构化数据下支持几何图展示,如仪表盘、饼状图、柱状图、曲线图、曲面图、雷达图等 2) 支持专业报表、即席报表、企业级复杂报表、自定义报表等报表展示形式; 3) 支持假设分析和多维分析等数据挖掘的展示; 支持多种可视化图表的展示。
6. 5. 2性能要求
GY/T 339.22020
要求如下: a)支持数据联表数量不少于100,000,000条; b)在一亿条数据记录规模下,SQL查询平均响应时间应小于5s: c)在一亿条数据记录规模下,NoSQL的平均响应时间应小于1s。
要求如下: a)支持数据联表数量不少于100,000,000条; b)在一亿条数据记录规模下,SQL查询平均响应时间应小于5s; c)在一亿条数据记录规模下,NoSQL的平均响应时间应小于1s。
6. 6. 1功能要求
要求如下: 应具备对外提供数据服务的功能,如向用户提供数据服务产品、处理用户对数据服务的申请、 进行用户授权管理,以及服务计费、监控和审计等; 应提供开放的数据访问API; 应提供数据分发功能; 应支持按模板打包分发; 应提供按需的数据存取访问服务; f)应允许用户配置和管理数据共享服务,如数据提取服务、数据发送服务等; 宜提供数据分发二次开发接口,允许用户基于开发接口自定义业务; 应支持对数据开放服务的管理和监控,如可管理数据服务的用户权限,查看运行日志,统计服 务性能等。
a)在批量实时数据交换场景下,集群数据吞吐不低于200MB/s或20万条数据记录每秒时,单条 数据记录平均响应时间不大于100ms; b) 应支持开放不小于10TB的数据容量: C 在提取多种数据源时,响应时间(用户向数据源发出请求到开始获得数据时间)应小于30s; 系统数据吞吐能力应不小于400MB/s; e)支持的并发用户数应不小于1000个。
6.7.1数据资源管理
6.7.1.1数据保护策略
要求如下: a 应支持数据分类、分级管理,可针对不同类别和级别的数据采取不同的保护措施; b 应支持数据安全标记,可按安全标记进行授权和访问控制; C 应在数据采集、存储、处理、分析等环节支持数据分类和分级,并应确保各环节对不同类别和 级别的数据采取的保护策略是一致的; d 应在数据清洗和转换过程中对重要数据进行保护,以保证重要数据在清洗和转换前后的一致性 避免数据失真,并在出现异常时能有效还原和恢复被处理的数据; e 应跟踪和记录重要数据的采集、处理、分析和挖掘等过程,以通过溯源能重现相应过程; f)应采取物理破坏或使用无价值数据多次填充等手段,彻底销毁废弃存储介质上的数据。
6.7.1.2数据生命周期管理
GY/T 339. 22020
对数据生命周期的管理,宜采取“减少成本、减少风险”的策略,要求如下: a)应将数据的生命周期与存储级别相匹配,如活跃数据存放在在线存储中,非活跃数据存放在离 线存储中; b) 应积极管理数据的生命周期,主动管理数据的生命周期; C 应满足法律和审计要求; d 宜以减少信息管理风险为数据生命周期管理目标; e) 宜以提高业务连续性为数据生命周期管理目标; f)宜以提高服务水平为数据生命周期管理且标
6. 7.2 元数据管理
元数据是描述数据的数据,与数据构造、数据流转、数据使用和数据维护密切相关,大数据平台应 发持对元数据进行以下管理: a) 应可以通过SQL脚本、API等方式管理元数据 b) 应可以通过手工编辑的方式管理元数据; C 宜使用XML、EXCEL存储表达元数据; d) 应支持增加、删除和修改元数据; 对于元数据的增量维护,应具备版本管理功能,如保留历史版本; f)应支持查询和统计元数据的使用情况
6.7.3系统资源管理
大数据平台应能集中管控大数据应用专属的计算和存储资源,要求如下: a)应支持按租户分配CPU、内存、存储资源; b 应支持资源预留; C 应支持多级租户管理; d 应支持集群在线扩容或减容; ? 应支持对辅助工具或服务组件进行管理; f) 应支持屏蔽故障部分的计算、内存、存储资源
8安全运行子系统技术要求
运维工作应包括运维能力体系建设、运维支撑保障基础建设、例行的各类运维操作和持续改进 作质量的过程管理等部分构成,通过对基础物理环境、数据资源、系统硬件、系统软件、应用车 务流程等对象的维护来对大数据平台的正常运转提供保障,
GY/T 339. 22020
GY/T 339. 22020
9.2运维能力和支撑保障
要求如下。 a) 应组建运维团队,设置相应的部门,设置合理的岗位和人员管理机制; b 运维团队应具备能够及时发现系统故障或隐患的技术能力,装备能够及时发现系统故障或隐患 了解业务状态的监测、检测、监控工具,设置备品备件库。有条件的大数据平台运营单位,宜 为运维队伍配置运维过程管理工具、资产管理工具、知识库等辅助工具 应编制运维服务对象和运维项目清单。 d) 应明确运维保障水平。 e 应制定运维沟通协调机制。 f)应规定运维考核方法。
GY/T 339. 22020
GY/T339.2—2020附录A(资料性)大数据参考体系架构GB/T35589一2017对大数据标准体系进行了归纳总结,提出了图A.1所示的大数据参考体系架构。信息价值链系统协调者数据据大数据应用提供者提收集预处理分析可视化访问消供费者大数据框架提供者处理框架:提供计算和分析信息技术价值批处理交互流处理信息交互通信框平台:提供数据组织与分析链索引存储资源管文件系统理安全和管架陀惠理基础设施:提供网络、计算、存储虚拟资源物理资源图例:数据流组件活动角色子系统图A.1大数据参考体系架构GB/T35589一2017将大数据参考体系架构概括为“一个概念体系,二个价值链维度”。“一个概念体系”是指它为大数据参考体系架构中使用的概念提供了一个构件层级分类体系JZGCP-BIM3:建筑工程P-BIM软件功能与信息交换标准合集(三),即“角色一活动一功能组件”,用于描述参考架构中的逻辑构件及其关系;“二个价值链维度”分别为“IT价值链”和“信息价值链”,其中“IT价值链”反映的是大数据作为一种新兴的数据应用范式对IT技术产生的新需求所带来的价值,“信息价值链”反映的是大数据作为一种数据科学方法论对数据到知识的处理过程中所实现的信息流价值。18
GY/T 339.22020
GB/T35589一2017使用构件层级结构来表 大数据系统的高层概念和构件分类。从构成上看,大数 据参考体系架构由一系列在不同概念层级上的逻辑构件组成,这些逻辑构件被划分为三个层级,从高到 低依次为角色、活动和组件,其中: 一角色:处在构件的最顶层级,包括系统协调者、数据提供者、大数据应用提供者、大数据框架 提供者、数据消费者、安全和隐私、管理; 一一活动:处在构件的第二层级,是每个角色执行的活动; 一一组件:处在构件的第三层级,是执行每个活动需要的功能组件。 本文件参照了GB/T35589一2017大数据参考体系架构中使用的构件层级分类体系方法,以最大程度 地表达大数据系统中不同的角色以不同的组件开展不同的活动这一主要思想。
CCES 2-2017-T 市域快速轨道交通设计规范GY/T 339. 22020
L1 GB/T22240一2008信息安全技术信息系统安全等级保护定级指南 3] GB/T 25069—2010 信息安全技术术语 4] GB/T 35274—2017 信息安全技术大数据服务安全能力要求 5] GB/T 36073—2018 数据管理能力成熟度评估模型 6] GA/T 1389—2017 信息安全技术网络安全等级保护定级指南 7] GY/T 317—2018 电视台信息系统运行维护服务通用要求 81 T/31 SCTA001—2017 工业化大数据平台技术规范数据采集接入 9] T/31SCTA002一2017工业化大数据平台技术规范数据存储 10] T/31SCTA003一2017工业化大数据平台技术规范数据处理 11] T/31 SCTA004—2017 工业化大数据平台技术规范数据展示 12] GD/J 037—2011 广播电视播出相关信息系统安全等级保护定级指南 13] GD/J 038—2011 广播电视播出相关信息系统安全等级保护基本要求 [14] 中国电子技术标准化研究院.大数据标准化白皮书(2020版) 15] 全国信息安全标准化技术委员会.大数据安全标准化白皮书(2018版) [16] 国家广播电视总局.广播电视和网络视听大数据标准化白皮书(2020版
[1]GB/T22240一2008信息安全技术信息系统安全等级保护定级指南 [3] GB/T 25069—2010 信息安全技术术语 [4] GB/T 35274—2017 信息安全技术大数据服务安全能力要求 [5] GB/T 36073—2018 数据管理能力成熟度评估模型 [6] GA/T1389—2017 信息安全技术网络安全等级保护定级指南 [7] GY/T317一2018电视台信息系统运行维护服务通用要求 [8] T/31SCTA001一2017工业化大数据平台技术规范数据采集接入 [9] T/31SCTA002一2017工业化大数据平台技术规范数据存储 [10] T/31SCTA003一2017工业化大数据平台技术规范数据处理 [11] T/31SCTA004一2017工业化大数据平台技术规范数据展示 [12] GD/J 037—2011 广播电视播出相关信息系统安全等级保护定级指南 [13] GD/J038一2011广播电视播出相关信息系统安全等级保护基本要求 [14] 中国电子技术标准化研究院.大数据标准化白皮书(2020版) [15] 全国信息安全标准化技术委员会.大数据安全标准化白皮书(2018版) [16] 国家广播电视总局.广播电视和网络视听大数据标准化白皮书(2020版)