标准规范下载简介
GB/T 40571-2021 智能服务 预测性维护 通用要求.pdfICS 25.040.40 CCS N 19
GB/T 40571—2021
国家市场监督管理总局 发布 国家标准化管理委员会
广州市新光高速路施工组织设计GB/T 405712021
范围 规范性引用文件 术语和定义 缩略语 总则 5.1 分类 5.2 工作流程 5.3 系统架构 设备与功能识别 失效模式影响分析功能 7.1 失效模式分析 7.2 设备影响分析 8可行性分析功能 8.1 数据状况分析 8.2 风险分析 状态监测功能 10故障诊断功能· 11 寿命预测功能· 12维护管理功能 附录A(资料性)离散制造预测性维护实施案例 附录B(资料性)典型设备预测性维护实施案例: 附录C(资料性) 设备监测参数 会老文献
录A(资料性)离散制造预测性维护实施案例 录B(资料性)典型设备预测性维护实施案例 录C(资料性)设备监测参数 考文献
GB/T 405712021
GB/T40571202
智能服务预测性维护通用要
本文件规定了智能服务预测性维护的总则、设备与功能识别、失效模式影响分析功能、可行性分析 功能、状态监测功能、故障诊断功能、寿命预测功能、维护管理功能等。 本文件适用于预测性维护系统的设计、开发、使用、维护等,
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅 该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T2298 机械振动、冲击与状态监测词汇 GB/T7826 系统可靠性分析技术失效模式和影响分析(FMEA)程序 GB/T20921 机器状态监测与诊断词汇 CO GB/T27921 风险管理风险评估技术
3.1 边缘计算edgecalculation 在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力的开放平台,就近提供边缘智 服务,满足行业数字化在敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的关键需求。 3.2 故障fault 可能导致功能单元执行要求功能的能力降低或丧失的异常状况, [来源GB/T15969.6—2015,3.24] 3.3 智能服务intelligentservice 能够自动辨识用户的显性和隐性需求,并且主动、高效、安全、绿色地满足其需求的服务。 注:预测性维护是一种典型的智能服务模式。 3.4 监测终端monitoringterminal 采集、处理物理量(如流量、压力、振动、温度、湿度等)信息,并能与集中或交互终端进行数据交互的装置 [来源:GB/T31960.1—2015,3.4,有修改 3.5 预测性维护predictivemaintenance 根据观测到的状况而决定的连续或间断进行的维护,以监测、诊断或预测构筑物、系统或部件的 件指标
GB/T 40571—2021
预防性维护preventivemaintenance 探测、排除或缓解使用中的构筑物、系统或部件降质的活动,以便通过把降质和故障控制在可接受 的水平来维持或延长其使用寿命。 注:预防性维护可以是定期维护或计划维护, [来源:GB/T29308—2012,3.14,有修改] 3.7 人工智能artificialintelligence 计算机科学的分支,专门研究数据处理系统,该系统执行通常与人类智能相关的功能。 [来源:GB/T5271.1—2000,01.06.12,有修改
下列缩略语适用于本文件。 CBM 基于状态的维护 Condition Based Maintenance DCS 分布式控制系统 Distributed Control System ERP 企业资源规划 Enterprise Resource Planning FCS 现场总线控制系统 Fieldbus Control System FMEA 失效模式与影响分析 Failure Mode and Effects Analysis MES 制造执行系统 Manufacturing Execution System PLC 可编程逻辑控制器 Programmable Logic Controller RUL 剩余使用寿命 Remaining Useful Life
预测性维护的实施,根据需求和目的的差异,可分为以下三类。 第一类:实现基于状态的维护(CBM),即通过设备运行状态关键数据的采集,完成状态识别和基本 的故障诊断等功能,并提供基本的维修与维护策略,如报警、停机等。该类预测性维护可基于MES或 其他信息系统开展。 第二类:实现基于预测的维护,即通过设备运行状态相关数据的采集,完成状态识别、故障诊断、寿 命预测等功能,并预先提供维修和维护方案,支持设备的维修维护管理。该类预测性维护宜基于独立的 系统开展,可与MES或其他信息系统互联互通, 第三类:实现基于全生命周期管理的维护,即通过设备运行状态数据的全面采集,完成状态识别、故 障诊断、寿命预测等功能,并能判断寿命预测结果的置信度,预先提供完整可信的维修和维护方案,指导 设备的维修维护管理。执行该任务的系统能够在数字李生、人工智能、系统集成等技术的辅助下,不断 尤化预测结果,提升预测的置信度与可行性, 注:由于本文件的对象是预测性维护系统,因此本文件中规定的技术条款主要针对第二类预测性维护的实施
预测性维护的实施应着重于识别和避免根原因的失效模式,其工作流程如图1所示,预测性维护 与数据传输也应遵循该流程
GB/T 405712021
图1预测性维护系统工作流程图
预测性维护系统的功能模型如图2所示,其中仅包括了系统必备的功能,可根据实际情况增加其 模块。
注:图中的虚线和虚框表明该内容不在本文件的范围内
图2预测性维护系统功能模型
预测性维护的开展主要基于采集设备运行状态数据的监测终端和数据采集设备,设备控制系统,能 多进行数据存储、分析、传输的上层系统或平台,具体如下: 一监测终端和数据采集设备:该类设备可以集成在设备本体,也可外置,其功能是对设备的运行 状态参数进行监测,为数据的分析计算提供数据。但通常集成在设备本体的方案更适用于设 备制造商,设备用户更推荐采用外置监测终端的方案。 设备控制系统:对于不具备边缘计算、仅提供数据采集功能的控制系统,可将其视为数据采集 设备,对于具备边缘计算能力的控制系统,能够将设备运行状态参数在边缘端进行分析和预 测,并通过人机界面或其他手段显示结果。边缘计算技术的应用需综合考虑成本与预测的准 确性。 上层系统或平台:将采集的数据上传至系统或平台中进行分析和预测,并能够不断修正预测 结果,为了更好地实现设备维护,该系统或平台应与MES或ERP提供信息交互。但该系统或 平台对于通信协议与接口的一致性具有较高的需求,且需考虑信息安全。 面向生产单元和设备开展预测性维护的案例见附录A和附录B
设备结构与功能是开展预测性维护的关键输入。在预测性维护过程中,需识别的特征包括: 设备性能,电学效应如电流,物理效应如密度,温度效应如温度,动力学效应如振动,颗粒效应 如油液成分等; 润滑方式,如油类、脂类、粉类等; 控制系统,如DCS、PLC、FCS等; 执行机构,如机械式、电气、气动式、液压式; 设备输入,如水、电、气等; 设备输出,如功率、牵引力、压力等; 保护系统,如过速、过流、过压等; 功能如机器或设备的功能等:
设备结构与功能是开展预测性维护的关键输入。 设备性能,电学效应如电流,物理效应如密度 如油液成分等; 润滑方式,如油类、脂类、粉类等; 控制系统,如DCS、PLC、FCS等; 执行机构,如机械式、电气、气动式、液压式; 设备输入,如水、电、气等; 设备输出,如功率、牵引力、压力等; 保护系统,如过速、过流、过压等; 功能,如机器或设备的功能等;
人员,如操作人员、维修人员、维护人员等; 监测技术,如信号监测、视觉检测、热成像等; 结构/基础,如位置、材料、刚度、柔性、疲劳、热膨胀等 耦合,如不同设备之间的相互影响等; 设备运行条件YD/T 3576-2019 基于移动互联网的个人健康系统服务指标要求和评估方法.pdf,如建筑物、安装条件、共振等; 管网与辅助系统,如进口、出口、冷凝器、阀门等; 设备和系统的工况与工况的变化范围; 环境,如温度、湿度、海拔等;
7失效模式影响分析功能
GB/T 405712021
依据失效模式分析能够容易、低成本地对产品或过程进行修改,从而减轻事后修改的危机,并且找 到能够避免或减少这些潜在失效发生的措施。该方法有助于选择监测灵敏度最高的监测技术,并有助 于评估指定症状的变化率。当某种技术灵敏度的置信度和形成的诊断结论与预报的准确性受到质疑 时,建议使用更多相关的附加技术。 失效模式分析可采用FMEA等方法,并符合GB/T7826的规定
对所有的设备进行影响分析碗扣式支架施工方案,以创建 设备的优先排序表,可包含(或不包含)在状态监测方案 中。它可以是依据以下因素的简单的评价体系,如: 设备停机的成本或生产损失的成本; 失效率和平均维修时间; 穴余架构; 间接的或二次损坏; 更换设备的费用; 一维修或备件的费用; 全生命周期的费用; 一监测系统的费用; 一安全性和环境影响。 上述一个或多个因素可以在公式中加权计算,以生成优先排序表。
在选定监测分析对象及失效模式后,应考虑当前的已有数据或可行监测方案是否可以获取用于分 析建模的数据。从数据分析及建模层面考虑,数据状况分析包括数据从产生到最终使用的全过程,包括 背景信息、数据量、变量类别、数据质量、数据获取可行性等几个方面。 背景信息是历史数据或需要采集数据时被采集对象本身以及相关周边环境信息的统称。背景信息 也是数据全面性考虑的一个体现, 数据量指可提供的历史数据总量,应考量在不同工作状态,不同失效模式下的总体数据量