某某工程地下室施工方案

某某工程地下室施工方案
仅供个人学习
反馈
文件类型:.zip
资源大小:536.58K
标准类别:施工组织设计
资源属性:
下载资源

施工组织设计下载简介

内容预览随机截取了部分,仅供参考,下载文档齐全完整

某某工程地下室施工方案

主楼部分全部采用直螺纹连接接长钢筋,并按规范要求错开接头50%,其余部分地梁钢筋采用闪光对焊加直螺纹连接接长。

2、底板钢筋:全部采用闪光对焊加搭接42d接长。

对焊接头按规范要求提前送检,检验合格后方可进行底板钢筋绑扎。

4.2 底板钢筋绑扎施工

钢筋保护层厚度:底板、承台、底梁底筋:50,面筋:35JCT202-2011 天然大理石荒料,外墙外侧钢筋:35,内侧钢筋:25。

1、底板钢筋绑扎:底板钢筋工程量大,穿插复杂,必须注意施工顺序:

(1)施工前弹出钢筋位置线,以确保钢筋绑扎后位置的正确性。

(2)先绑扎承台、地梁钢筋,承台、地梁箍筋驳头需二个方向错开。

(3)承台、地梁钢筋绑扎完成后,按弹出的底板钢筋位置线,先铺底板下层钢筋,根据底板受力情况,确定下层钢筋哪个方向的钢筋在下面。原则上应首先满足受力主筋保护层位置。

(4)钢筋绑扎时,靠近外围两行的相交点每点都绑扎,中间部分可梅花型绑扎,双向受力钢筋应满绑。

(5)、底排筋用C35砼垫块垫起,间距800,梅花状布置。

(7)、由于基础底板及地梁的受力的特点,上、下层的钢筋接头位置应符合设计要求。

外墙竖向钢筋采取一次性插到下一层楼面的方法,要求沿底板边搭设钢管架防止竖筋偏位、倾覆,钢管架搭设方法详见后面地下室墙柱施工方案,施工时应严格控制竖筋顶标高。

柱四角的主筋落到底板底层钢筋网上,其他钢筋入底板内45d,上部采用50%接头错开,短筋应超出底板面500。

为了保证墙、柱钢筋的正确位置,在防水保护层上放出轴线及墙柱位置线,经工程技术组仔细验线确认无误后,再绑钢筋。

待承台及板的面筋绑扎完毕后,再在面筋上放出墙柱位置线,验线无误后,再进行墙柱插筋。

柱墙竖向钢筋在底板面筋之上应绑扎5排箍筋或水平筋,并用点焊固定,柱筋伸入底板内的锚固段也应在上中下三个位置加上箍筋,端头用短钢筋点焊固定,并保证其垂直、不倾倒、不变形。

挡墙先用二根通长Φ12钢筋点焊在底板面筋上,墙竖筋同Φ12钢筋点焊牢固,以上保证竖筋绑扎牢固。

底板砼浇注时,振动棒严禁直接触及墙柱筋,钢筋班应派专人负责对偏位的钢筋进行纠正加固。

4.3 浇筑流向、主要浇筑方法和设备安排

本工程地下室施工共安装一台塔吊,位置详见施工平面图,砼输送泵二台,一台放在大门口,另一台放在门口路边,搅拌机二台(备用)。

根据底板尺寸和方量,现场布设二台混凝土输送泵,同时利用安装在中间的一台塔吊辅助浇筑。浇筑沿纵向由北向南进行。在施工每一小区域的时候,浇筑时应在遵循主浇筑方向的同时,将每块区域浇筑完毕,避免出现施工冷缝。

当砼浇灌距离砖侧模约为2m时,此时砼应靠砖侧模下料,以使砼与前面浇灌砼之间形成凹槽,由于砼泌水,从而在凹槽积水,及时用离心泵把水抽走。

对于高低差部位的浇筑方法:由于高低差部位混凝土浇筑时容易出现大量返浆并造成烂根,因此混凝土浇至此处时应控制好浇筑时间,上层混凝土应待下阶混凝土接近初凝时方可下料进行浇筑。(其余各区底板高低差部位浇筑方法与此相同)

混凝土采取全斜面分层方法进行施工,即“一个坡度,循序推进,一次到顶,薄层浇筑”方法。

4.4 底板砼浇筑施工工艺

1、清理基层的杂物,浇水湿润基层及砖侧模,但不允许存在积水现象。

2、砼浇灌分层时,每层砼必须在下一层砼初凝前覆盖。为了保证不出现施工冷缝,混凝土内掺加缓凝型减水剂,砼初凝时间为约4小时。每台泵每小时可产生混凝土量为30立方米,两台泵两小时可生产混凝土120立方米。混凝土底板厚度为500mm,底板宽度为40米,每3米宽约有混凝土75立方米,浇捣来回一次需1.5小时,考虑其他因素,浇捣时混凝土宽度控制在3米左右即可。浇捣顺序见平面图。

3、根据混凝土泵送时自然形成一个坡度的实际情况,在每个浇筑带的前、后各布置一道振动器。第一道布置在混凝土卸料点,主要解决上部混凝土的捣实,和防止混凝土离析。由于底皮钢筋间距较密,第二道布置在混凝土坡脚处,确保下部混凝土的密实。随着混凝土的向前推进,振捣器也相应跟上,以确保整个高度混凝土质量。

4、振捣砼时,振动棒移动间距为0.4m,靠近侧模时不应小于0.2m,分层振捣时振动棒必须进入下一层砼5~10cm,以使上下两层充分结合密实,消除施工冷缝。振动棒振动时间为20~30秒,但以砼表面出现泛浆为准,振动棒应做到“快插慢拔”。

5、砼表面出现大量泌水时,采取措施用离心泵及时把多余水分排走。

6、砼浇灌过程中,要随时采取措施预防钢筋、模板、预埋件发生移位,并且及时拆除施工临时设施。

7、进行二次振捣,以提高混凝土抗裂能力。

8、底板泵送混凝土,其表面水泥浆较厚,在浇筑混凝土结束后要认真处理。首先用长刮杆找平,然后利用提浆机进行提浆,再用木槎子打磨压实收光,以闭合收水裂缝。为了保证砼表面不出现裂缝,根据现场情况,必要是还应进行二次收浆。

9、砼在浇灌12小时后,就应开始对混凝土进行养护,底板进行蓄水养护和保温14天,水的深度为20cm。

10、底板止水带侧墙细部施工方法:

在底板砼浇灌完毕而还没有初凝时,同时砼坍落度损失5~8cm时,及时利用吊车把砼浇灌到模板内。待模板内的砼坍落度损失5cm时(大约1小时后),才能开始振捣侧墙砼。

振动棒必须插入侧墙下底板砼10cm振捣,以消除施工冷缝,振捣必须密实,同时注意防止振捣时间过长,避免砼中砂浆从根部溢出,造成烂根。

注意预防止水带在砼施工过程中偏位,如发生偏位,及时采取措施纠正。

.4.5 底板浇筑质量保证措施

1、预先和气象部门取得联系,确保避免在施工期间下大雨,同时准备塑料帆布,作好下雨的预防措施。当气温高于35℃时,不应进行大体积混凝土施工。

2、坚持浇灌申请制度,由于本工程基础工程量较大,因此应提前将施工方案报甲方、监理审批,同意后还应在每次浇筑前申请浇灌令。浇灌令由公司总工程师、甲方、监理共同签署后,方可进行浇筑。

3、合理安排分班作业,严禁打疲劳战。本工程拟每日安排两班。

4、充分做好混凝土浇筑前的各种准备工作,对于机械设备,应提前进行试运转,对于所有参与底板混凝土施工人员,均应进行详细的施工交底,交底以会议方式进行,交底内容应包括:浇筑流向、各部位详细的浇筑方法、人员分工情况及各自职责、人员交接班具体时间和要求等。必须做到使每一个参与施工人员均心中有数,从而避免因混乱而影响质量。

5预备一台发电机,确保在停电时能及时供电,满足施工期间电力供应。

6、混凝土浇筑时,化验员应做好塌落度的测试工作,若发现有超标情况,应立即退回,严禁在现场随意加水。

7、混凝土施工期间,人员交接班必须有序进行,上一班的管理人员和操作人员尤其是振捣手,必须向接班人员交代清楚交接部位的施工情况,严禁因一哄而散而出现漏振、漏捣。

4.6 劳动力组织和主要机械设备

由于本工程工程量比较大,必须对管理人员和操作工人采取分班轮流替换,以保证足够劳动力完成任务。拟每日安排两班,现将每一班应包括的主要人员计划如下:

浇筑期间项目部总负责人:

第五节 地下室底板承台大体积砼施工技术

本工程地下室底板、承台砼均为大体积砼,由于其散热面积大,降温快,容易产生较大的内外温差,如保护不当,将会使表面裂缝增多,甚至产生贯穿裂缝的诱发因素。因此需有合理的计算及施工部署来保障结构质量。结合本工程的具体特点,制定以下施工措施:

砼采用商品砼,现场泵送,浇筑完成后蓄水养护,木模板,

由于搅拌机房为开敞式,所以取出罐温度为砼的拌和温度,底板砼设计强等级C30,每立方米原材料配合比及温度、比热如下表:

根据以上数据:出罐温度=拌合温度

=ΣtiWC/ΣWC=73122/2704.8=27℃

b 、入模温度Tj、即浇筑温度

装卸两次:A1=0.032×2=0.064

运输时间:30分钟 A2=0.0042×30=0.126

浇筑10分钟:A3= 0.003×10=0.03

=27.66℃

2、砼绝热温升值T(τ)

Cp

式中: T(τ):为龄期τ时砼的绝热升温值

Q:每公斤水泥水化热:取461KJ/Kg

C:砼比热:取0.97KJ/Kg.k

P:砼密度:取2400Kg/m3

M:随水泥品种,比表面积及浇筑温度而异,取0.396

G:龄期:考虑3天时,水化热量最大,顾取τ=3

=75.25×0.695 = 49.5℃

3、砼内部实际最高温度Tmax=Tj+T℃.ξ(ξ取 0.68)

式中:ξ:不同龄期,不同浇筑块厚度时的降温系数

浇筑层厚度根据本工程实际取1.4米 ,龄期取3d

则ξ=0.49

故:Tmax=27.66+49.5×0.49=52℃

4、砼表面温度 Tb(τ)

上表面采用蓄水养护法,水深0.1m

a、砼的虚铺厚度h′=0.33

H=h+2 h′

式中,h为砼实际厚度,取1.5m

故 H=1.3+2×0.33=1.99m

c、砼内部最高温度与外界气温之差△T(τ)

d. 砼表面温度Tb(τ)

=30+12.2

=42.2℃

5.2 承台大体积砼施工措施

因为在底板砼温控计算中(见上),未考虑板底、垫层、胎模等约束作用及散热条件,在蓄水养护中也未考虑水的对流作用和太阳辐射影响,因此,理论计算与实际有一定出入。根据我公司多年施工测试结果,构件深(厚)度在2m以内时,以上计算结果接近实测结果,因此,我们对底板、地梁、小承台的温度计算和施工措施是可行的。同时,针对本工程群桩承台(厚度1.4m)需进一步计算和调整。

温差理论复核,根据底板计算:

入模温度TJ=22.66

砼绝热升温T(3)=49.5

砼内部实际最高:Tmax=Tj+T.ξ(ξ取0.74)

=27.66+49.5℃×0.74

= 64.29

根据历年工程实践证明,大体积砼最大温差发生在砼构件中心(接近中心)与基础垫层胎模表面处,事实上,由于这些地下部分介质具有不保温、流动性大,且温度低的特点,通常造成实际最大温差比ΔTd大5o左右。

即Δmax=39.3>>25o

历年实践证明,对于超大体积砼施工保温措施已无法满足要求。

5.3 砼的运输及泵送

计算砼浇筑时每层最大需求量如下:

a、浇筑中未涉及承台情况。

每层最大需求量Q=(Σb1×h1+Σb2×h2+Σb3×h3)×d/sin12o

Σbh=(32.6×0.6+3.6×1.2)

Q=23.9×0.4/ sin12o

b、次流向为地梁方向(地梁通长浇筑):

5×1.8×1.8×1.3+2.9×1.2+22×0.8×1.2=45.66

∴Q= 45.9m3

这样,每小时要求的浇筑量为

q=Q/△t

式中△t为砼初凝时间,核定为4h,则

q=45.9/4=11.5(m3/h)

由于Q<单台泵输送能力30m3/h,故不会因为输送问题出现施工冷缝。

c、底板砼浇筑时,塔吊已安装就位,可用塔吊作为辅助运输手段。

5.4 大体积混凝土防裂技术措施

根据前面计算公式可知:大体积混凝土温度应力与结构的长度、厚度﹑内外温差及地基的约束情况具有直接影响,本工程必须采取一些专门措施控制温度应力:

(一)、使用补偿收缩混凝土,以膨胀补偿收缩:

本工程根据设计要求底板中掺加水泥用量10%的UEA,同时在底板中

收缩应力较大部位通过调整UEA掺量(可提高到12%)给予较大膨胀应力,全面补偿砼的收缩应力。

对于UEA混凝土的施工应注意以下问题:

③要求振捣密实,不要过振和漏振。

④掺不同品种外加剂在补偿收缩混凝土总会产生不同效果,因此使用时必须先试验确定。

(二)、混凝土中掺加杜拉纤维提高混凝土的极限抗拉能力:

聚丙烯纤维(杜拉纤维)混凝土是一种合成纤维混凝土,具有较好的抗裂性能,可提高混凝土的抗拉能力及耐久性,控制裂缝的开展,是提高工程质量的有效措施。

1、在混凝土中掺入杜拉纤维,体积掺量为0.078%,约每立方米混凝土掺入700g杜拉纤维,对混凝土的性能改善会起很大的作用:

A、提高了混凝土的抗裂能力。

B、提高了混凝土抗渗性能。

C、提高了混凝土的抗冲击及抗震能力。

2、合成纤维可作为主要加筋材料提高混凝土材料的抗拉、韧性等性能,用于各种水泥基板材,也可作为一种次要加筋材料主要用于提高水泥混凝土材料的抗裂性。

合成纤维混凝土的性能:

A、混凝土中掺入合成纤维后,可使数以千万计的纤维三维均匀地分布在混凝土内部,混凝土塑性阶段干缩及冷缩所产生的表面裂缝一旦延伸到合成纤维即可停止发展。

B、合成纤维混凝土的抗裂性取决于纤维的长度和掺量,而纤维长度与骨料尺寸有关,普通骨料混凝土骨料一般以20mm长为宜。混凝土的抗裂性随纤维掺量的增加而提高(表1、2),但其递增率并不呈线性关系。如综合技术与经济一并考虑,纤维掺量为600∽900 g/m3,已有良好的抗裂性。

表1 合成纤维混凝土的抗裂性

表2 纤维掺量对混凝土抗裂性的影响

C、合成纤维掺量为600g/m3时的干缩值见表3。掺入合成纤维可显著降低混凝土的干缩值;早期约可降低50%,后期亦可降低30%。这是合成纤维之所以可提高混凝土抗裂性的原因之一。

D、提高了混凝土抗渗性能。每立方米混凝土中掺入这种杜拉纤维500g,混凝土的抗渗性能提高近60∽70%。一方面由于纤维的加入,提高了混凝土的抗裂能力,使混凝土内部微裂纹的数量下降;另一方面,均匀分布在混凝土中彼此相粘连的大量纤维起了“承托”骨料的作用,降低了混凝土表面的析水与集料的离析,从而使混凝土中直径为50∽100纳米和大于100纳米的孔隙的含量大大降低。

3、合成纤维混凝土的应用技术:

普通混凝土中合成纤维的掺量取决于混凝土材料自身的组成、养护环境的温度、湿度及风速,一般为600∽900g/m3。由于合成纤维对新拌合硬化混凝土的性能无显著影响,所以加入纤维后一般并不需要调整混凝土的配合比。纤维混凝土可在各种搅拌机中搅拌,亦可在输送车中拌制,工作量较少时亦可人工搅拌,但必须使纤维分布均匀。合成纤维通常与混凝土其他组成材料同时加入搅拌机。如果搅拌站投料有困难,只要有足够的搅拌时间,亦可在搅拌车料口加入。纤维混凝土的搅拌时间可以与普通混凝土相同。纤维混凝土的输送、浇筑及养护与普通混凝土相同,但为确保混凝土的抗裂性,在养护时应采取保湿、保温措施。

(三)、控制混凝土温升:

根据前述大体积混凝土裂缝产生原因可知:大体积混凝土由于前期(一般在三天以内)水泥水化使内部温升过高,内外温差过大,造成后期收缩受约束而产生拉应力,当这种拉应力超过混凝土抗拉强度后就会产生裂缝。因此控制水泥水化热引起的温升,即可减少降温温差,这对降低温度应力,防止产生温度裂缝能产生釜底抽薪的作用:

科学的选用材料配比,用较低的水灰比、水和水泥用量:

①选用中低热的水泥品种:本工程拟采用矿渣水泥。

②掺加适量粉煤灰,可减少水泥用量,从而达到降低水化热的目的。但含量不能大于30%。

③掺加减水剂:减水剂中阴离子表面活性剂,对水泥颗粒有明显的分散效应,并可使水的表面张力降低而引起加气作用。因此在混凝土中掺加一定比例的减水剂,不仅可以改善混凝土和易性,而且可以减少水和水泥用量,从而降低了水化热。

④在满足砼强度下,骨料尽量选用较大粒径(2~4cm),同时具有较好级配,石子的含泥量控制在1%以下,砂的含泥量在2%以下。这样既提高了混凝土抗压强度,也可以减少水泥用量,

2、混凝土浇筑与养护阶段的温控措施:

a、用分层分段方法进行连续浇筑,分层连续浇筑一方面便于振捣,另一方面可利用混凝土层面散热。

b、尽量选择气温较低环境下浇灌砼,以减少砼内外温差。

3、作好保温保湿工作,延缓混凝土降温速率:

保温是大体积混凝土施工的关键环节,其目的是降低大体积混凝土浇筑块体的内外温差以降低混凝土内部自约束应力,其次是降低混凝土块体的降温速度,充分利用后期混凝土的抗拉强度,以提高混凝土承受外约束应力时的抗裂能力,以达到控制温度裂缝的目的。另外,为了防止混凝土表面脱水干裂也必须进行保湿养护。

在每一个被后浇带包围起来的块体平面设五个测温点,测温点呈梅花状布置,每个监测点沿剖面设有三个温度点(见插图)

测温采用测温仪,即在混凝土内不同部位埋设铜热传感器,用混凝土温度测定计录仪,进行施工全过程的跟踪和监测。严格控制砼内外温差小于25℃,如果出现温差过大现象,则应采取应急保温措施。

温度监测在该块砼浇灌完毕后2天开始监测,监测时间为半个月,在前面7天,每隔2小时测温一次,以后7天,每隔4小时测温一次。

第二章 地下室结构施工方案

第一节 ±0.00以下施工区间及总工序安排

1.1 施工区间划分

竖向区间划分:按水平施工缝位置划分竖向区间

1.2 ±0.00以下施工总顺序

第二节 ±0.00以下竖向结构段(墙柱)施工

地下室竖向结构包括墙、柱及挡土墙等,其中地下室挡土墙为400厚的C30S8砼,为避免产生砼收缩裂缝,要求砼配合比中掺加粉煤灰和减水剂,地下室外墙和顶板掺适量的杜拉纤维。

2.2 地下室竖向结构施工难点及措施

根据设计要求,挡土墙水平筋位于竖向筋外侧,为达到最佳抗裂效果,施工时必须严格控制保护层厚度,使水平分布筋发挥最大作用,为准确控制钢筋位置及保护层厚度,采用定型套箍及塑料垫块加固,如下图:

1)、外挡土墙支模:侧壁钢筋砼支模时注意施工缝处的衔接处理,另需加斜撑钢管支撑剪力墙,保证剪力墙垂直度,如下图:

本工程地下室存在框支柱,柱截面形式多样,应根据不同截面进行加固。模板采用18厚聚氨脂面胶合板,并配以50×10mm和100×100mm方木(过刨)做背肋WW/T 0078-2017 近现代文物建筑保护工程设计文件编制规范,加固支撑采用Φ48×3.5钢管(高支模)和钢支撑。

第三节 ±0.00以下楼板施工

3.1 ±0.00楼板施工概况

本工程地下室楼板厚度为150,混凝土标号C30,S6

3.2 楼板施工难点

二、地下室楼板砼掺加杜拉纤维施工

为防止砼裂缝Q/SY 08313-2016 物探作业民爆物品安全管理规范.pdf,在楼板砼施工中掺加杜拉纤维及粉煤灰等外加剂,有效改善砼的质量。其施工工艺详见地下室底板施工方案。

©版权声明
相关文章