SY/T 7053-2016 标准规范下载简介
SY/T 7053-2016 海底管道总体屈曲-高温/高压下的结构设计.pdfSY/T 70532016
SY/T 70532016
包西铁路通道省界(陕西)至张桥段某标施工组织设计(完成稿)下述内容介绍了有关无黏性土壤中管道抬升抗力和向下刚度评估的推荐方法。
土壤抗力使用三线型模型,其承载能力可以达到最大值。该模型对能够引起全部抬升抗力作用 的位移有效,但是管道存在较大的垂直向上的位移,并最终沉入土层表面,因此该模型不可以描述 管道全部的力一位移关系。对于密实土壤,为了考虑松散状态土壤位移比失效位移大,该模型包含 峰后行为。 总抗力(剪切和重量)采用下述公式计算:
式中: H覆层高度(至沟渠顶部的深度减去至管道顶部的深度); 土壤水下重量; 横向土壤压力系数,考虑了抬升过程中垂向压力的增长; 内摩擦角; 管道直径。 公式(B.1)可以变为:
R=.H.D+.D? 儿 +K·tan()·H+ 8
R=·H·D+.D? 8
式中: f一抬升抗力系数。 关键的问题是确定合适的抬升系数f。升系数可由排水(峰值)摩擦角和横向土压系数计算得 到。抬升系数还可通过模型试验测得。如果用于模型测试土壤的排水摩擦角已知,那么之后可以用它 来计算横向土压系数。选择排水(峰值)摩擦角作为模型基础,但是必须强调的是摩擦角宜建立在相
应的压力水平上。相关密度可以用来修正排水摩擦角,但是必须考虑以下方面: a)回填材料的排水摩擦角依赖于材料的相对密度。这种依赖关系可以通过试验获得,也可推测 沟渠材料实际的真实密度。 b)沟渠材料的相对密度可以通过圆锥贯入试验(CPT)来测量,但是在低应力区域准确度不高。 c)很难测量碎石和岩石(不做进一步处理)相对密度。 需要认真评估抬升系数和其他相应的土壤参数之间的相互作用。确定抬升系数比较好的方法是选 择一个包含多数试验结果的取值范围,或者是在设计阶段制定标准,确定选择合理取值范围。
B.3.3抬升抗力及力一位移曲线的模型
少土中管道的抬升抗力Rx包含两部分,一部分源于管道上部的土壤重量,另一部分源 台升抗力可以表示为:
式中: H。一土壤表面值管道中心的深度; 一单位土壤水下重; F一抬升抗力系数; D一管道直径。 系数同样也表示摩擦抗力系数,因为抬升抗力中包含了土壤摩擦的分量。 拾升抗力系数可以表达为:
Rmar =1+ f ( .H。D) (B.3
式中: 一摩擦角; K一横向土压系数。 对于松散沙土中的管道,实验结果显示静止的土压模型用于K是合理的。因此
SY/T 70532016
namineeetal.(1990)提及了下述f的下限值
表明这个表达式,在值大约超过40的时候,计算出的f明显偏大。有关f的简化
为摩擦角度数。可以得到下述简单的关系
考虑到抬升,于的低尾结果是不利的。因此,对于于的分布的低尾部分应采用实际的或稍保守的 方式建模。我们已经知道于的分布向左倾斜。考虑的这一点,建议用均匀分布来表示丁的分布,其下 界为之前提到的fts,上界为fu=Ji+0.38。这种模型可以得到准确的均值。此外,均匀分布会使得f的 标准差变为:
SY/T 70532016
E[α]= 0.78 CoV[α]= 0.10
SY/T 70532016
通常对于逐渐贯入“完整土层”(假定回填土只提供自重压力)的管道的沉降抗力计算可以按下 式进行:
R(z)==N, "B(z) + N。 (po'+a) ·B(z)
Rv(2)==N " D + N。(po'+a)·D (B.12
下式是管道在沟渠底部逐渐贯入完整土层时对应的切向刚度。
=2="以及H=H+H
SY/T 70532016
安装后管道至完好土壤之间应有一定间隙,使松散的材料置于管道的下方。这种情况下割线刚度 会受到间隙区域向下位移的控制。其表达式如下:
0.5N,"D+N.?(H+ + z) + a 2
上述两个公式均忽略了产生向下抗力所需的变形。对应较小的沉降深度z,这个 咯,采用原来的公式将使计算出的切向刚度过大。当沉降深度z较小的情况下计算割线 下式计算:
式中,,至少为接触宽度B的0.05倍。如果分析结果对于切向刚度十分敏感,那么就宜考虑采 用完全非线性的力一位移曲线,即用Qv(2)代替zot/=z+。 割线刚度明显依赖管道的覆层高度、管道直径以及管道实际沉降的量级
考虑到三线型土壤抗力曲线的限制, 我们最终决定建议采用下述的取值范围,
SY/T70532016
土壤覆盖比率的限制如下
≤7.5 OD ≤8.0 OD 岩石:2.0≤ ≤8.0 OD 粒径: 岩石:25mm≤d≤75mm
限覆层高度条件下管道理埋入部分垂向刚度的
如果分析结果对于割线刚度敏感,那么宜采用公式(B.11)或公式(B.12)中的完全 移曲线模型来计算相应的刚度。
B.3.6沙土上管道弹簧刚度的概率模型
SY/T 70532016
式中,q是由管道传递至支撑土壤的线荷载,Z是管道相应的沉降深度一由原始 道底部的距离。线荷载q可由承载力理论进行预测。对于直径为D,摩擦角为Φ,单位 管道,下式适用:
假定沉降深度z三D/2,因为相对于深度更浅的沉降深度可以使刚度结果偏小(偏 种沉降假设,从上述公式中可以看出静态垂向弹簧刚度K。与管道直径D是成比例的。 /2时,采用蒙特卡洛法计算K。对应的特征量:
SY/T 70532016
上述研究,建议使用耿贝尔分布来表示Ks,相应的均值和变异系数的建议值在表B
本节内容为评估土中管道的抬升抗力和向下刚度的方法。两种主要挖沟覆盖法(即耕犁和喷射) 之间有轻微区别。土壤固结是一个重要的问题,尤其在喷射挖沟情况下。 黏土可用的抬升抗力模型的描述有多种形式。抬升抗力模型也和正常图表一起出现,表达式表明 抬升抗力不包括管道水下重量。
SY/T70532016
抬升抗力发展主要有两种不同的失效模式。这些失效模式由局部土壤失效和全部土壤失效组成。 局部土壤失效是指位于管道上方的土壤移位到管道下方,全部土壤失效指附属到土壤表面的土壤与管 道一起举起。局部土壤失效是管道深度剪切强度的单值函数,而全部土壤失效则为重量和剪切抗力的 联合函数。剪切抗力可以是排水的抗力或非排水的抗力,若为排水抗力,模型与无黏性材料的覆盖相 当:若为非排水抗力,使用沟土壤的不排水抗剪强度。
B.4.2挖沟方法效果
在挖沟后水/黏土马上出现在沟中。管道位于沟中时完全被其包围,水/黏土逐渐沉淀。管道有 可能会少量沉降到沟底部完整土壤中。管道周围黏土的剪切强度可以从0逐渐增加到正常固结黏土的 水平,这与黏土系数和黏土层厚度相关。随着土壤不断固结,黏土层厚度会减少。 随着时间推移,沟中黏土会恢复剪切强度。恢复的剪切强度最终可能达到恒定水平。 向上位移需要达到最大值,向上的抗力也可能受挖沟方法影响。喷射可以将水填满沟中黏土间的 缝隙,沟中黏土会逐渐均匀。
当管道置于挖坑设备挖好的沟中时,与完整土层相比,黏土中的含水量不会增长。因此通过敏感 度测试建立黏土的重塑土抗力的值可能偏小。 根据常规黏土固结理论,重新得到的剪切强度随着时间变化最终达到和有效应力成比例的强度 或和重塑剪切强度相等,取两者较大的一个。 通过挖沟希望能够通过将裂缝和水填满缝隙来改变黏土的整体结构。
建议不要寄希望于在施工后很短的时间内得到喷射黏性土的任何隆起抗力。隆起抗力依赖于固结 过程。
B.4.3.1局部土壤失效模式
抬升抗力通过下式来描述
式中: N一理论承载能力系数; 1—基于现场实验的经验系数(范围0.55~0.80); D一管道直径。 根据参考文献[2],深度失效的承载能力系数N。是管道表面粗糙度的函数。对于管道埋设深度 约小于4.5D,管道位于“浅层”失效区域,N可达到最大值,当管道的埋设深度更大时,N将不可 靠。由于“浅层”失效区域N。的变化,深度系数d。存在不同表达式。由于“浅层”失效区域的深度 效应,N=(N)浅层的公式如下:
SY/T 70532016
(当管道向上移动时,管道上方的土壤将向上移动
SY/T 70532016
根据APIRP2A,在黏土侧边施加荷载时的位移,对于50%的抗力为1%~5%,对于最大抗力为10%~40%。 对于e50在范围0.5%~2%
3.4.3.2总体土壤失效模式(浅层剪切失效)
本土壤失效延伸到土壤表面的抬升抗力,由
式中: H一覆盖高度(到达沟顶部的深度减去到达管道顶部的深度); 一土壤水下重量; s一从管道中部到沟的顶部平均不排水抗剪强度; D一管道直径。 失效表面的平均剪切强度需要反映挖沟后土壤强度,这与挖沟方法有关。 对于真实不排水情况,管道没有产生向下的吸力就不能向上移动(留出空隙)。抬升力一般形成 很慢,以致于即使管道没有向下的吸力而产生位移是可能的,这对于排水抗力模型实际上可能性更 大。一旦“临界”抗力被超过,位移率可能会增加。 已完成的实验表明,对于重塑黏土6/H比率为7%~8%,对于完整的黏土为1%~6%,对于 完整的黏土块为20%~40%。 对于浅理的管道,最大抗力将受到与全面土壤失效有关的抗力所限制,比如:失效表面向上延伸 到海床。这个抗力可由从局部土壤失效模型中分离出的垂直滑动模型代替,包括在表达抗力时依赖于 管道上方土壤的重量。
SY/T 70532016
B.4.3.3排水抗力模型
排水抗力模型由B.3.2中的公式(B.1)确定。
式中: N。—理论承载能力系数,见公式(B.23); 经验系数(抬升抗力的现场试验建议范围为0.55~0.80); s.—整个失效表面的平均再固结剪切强度,也可以保守取为管道中心的再固结不排水剪切强度 D 一管道直径。 完整土壤条件下渗透的垂直抗力由下式给出
式中: N—理论承载能力系数,见公式(B.23);
Rv.完整=(N。s.+p。)·B(2) z 图B6黏土中和垂直(向下)抗力有关的失效模式示意图 SY/T 70532016 对于黏土沟渠中管道主要垂直抗力向 沟中的抗力Rv.沟宜根据公式(B.25)局部土壤失效模式来计算。对于这种失效模式,考虑失效 面的平均剪切强度。作为保守等效,宜使用管道中心的剪切强度。失效位移,对于局部土壤失效模 式,应不小于管道直径10%或限制在完整土壤条件下空隙深度范围内。 和管道逐渐渗透到完整黏土内有关的抗力,Rv完整宜根据公式(B.26)计算。根据管道水下重 量所需要接触面积,可考虑最初可能的贯入。失效位移,可与完整黏土中最初的贯入值和管道半 径的差值一致,但是不能少于管道直径的10%。渗透需要调动50%的抗力,典型的是失效位移的 15%20%。 垂直向下刚度宜反映安装时沟中达到的沉降深度z和在这种沉降深度下承载能力所需的变形。刚 度正割函数可以如公式(B.27)定义 干和渗透相比很小,承载能力所需的变形可以忽略, 式中: Su。—挖沟深度处在位土壤剪切强度; k一挖沟深度处剪切强度梯度。 在管道铺设后宜和完整土壤有一定的缝隙以便松散材料出现在管道下方,这时的正割刚度将取决 干空隙区域的向下位移。可由下面公式描述【从公式(B.25)分离出1 式中 L 管道中心处的重塑土剪切强度; 一管道中心的重塑剪切强度梯度。 上述两个公式忽略了调动承载能力所需的变形。对于小的沉降深度乙、这个变形不可忽略,切向 SY/T 70532016 刚度的表达式可能对于这样的小沉降深度值估计过高。如果需要切向刚度金地网球馆桁架施工组织设计,宜采用公式(B.30 计算 对于这样的小沉降深度值估计过高。如果需要切向刚度,宜采用公式(B.30) 其中取0.10乘以接触宽度B。由于分析对于切向刚度敏感,宜考虑使用完全非线性荷载位移 曲线,比如:R(2)和2=z+8,而不是对于沉降深度z值的切向刚度。 B.4.5附加碎石的固结土壤中的抗力模型 附加碎石可能用于增加抬升抗力。但是,抗力变化受沟中黏土影响很大。室内试验表明,只要管 道位于黏土和碎石的分界层之下,管道仅仅和公式(B.22)中描述的局部失效模型有关的抗力有关。 多余的碎石可能沉人黏土层,减少了管道到边界层高度,但经验表明碎石和黏土的混合区域通常是黏 土而不是碎石。 当碎石埋设前可见大于50%的管道时,碎石/石块模型可以直接使用。当黏土覆盖管道时,要考 虑更软土壤的响应以及沟内材料的重塑强度。 碎石的最大抗力为垂向滑动模型,等于碎石高度的石块和覆盖高度的剪切抗力。 引起碎石中摩擦抗力的运动可能很大程度影响抬升力。因此碎石的选择取决于附加碎石的重量导 致黏土强度的增加和由于过剩孔隙水压力的消散引起的有效应力增加。该过程称为重塑,在B.4.6中 有详细说明, SY/T 70532016 固结是水从土壤和空隙压力中逐渐消失转变成土壤中增加的有效压力的过程。这个过程随着荷载 的施加或沟中的土壤随着挖沟而发生。当挖沟时有喷水装置,沟内的材料在挖沟后接近零压力时,固 结效果尤其显著。为了建立适当的抬升抗力柱模板安装采用单块组拼施工工艺,需要知道从挖沟到管道操作的时间。固结时间由尺寸固 结系数c表示,单位为平方米每年(m²/年)。固结时间和排水路径长度的平方成比例。对于沟中的管 道,排水路径长度可以认为是从管道中心到沟顶部的距离。对于实际工程,可建立“压前”的模型参 考文献[11。用于评估挖沟后任何时间沟底以上有效沟高度。 在以下计算时间之后固结完成: